DOI QR코드

DOI QR Code

Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface

  • Ree, Jong-Baik (Department of Chemistry Education, Chonnam National University) ;
  • Chang, Kyung-Soon (Department of Chemistry, Chonnam National University) ;
  • Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics, Inha University)
  • Published : 2002.02.20

Abstract

The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. Especially, we have focused on the mechanism changes with the hydrogen surface coverage difference. On the sparsely covered surface, the gas atom interacts with the preadsorbed hydrogen atom and adjacent bare surface sites. In this case, it is shown that the chemisorption of H(g) is of major importance. Nearly all of the chemisorption events accompany the desorption of H(ad), i.e., adisplacement reaction. Although much less important than the displacement reaction, the formation of $H_2(g)$ is the second most significant reaction pathway. At gas temperature of 1800 K and surface temperature of 300 K, the probabilities of these two reactions are 0.750 and 0.065, respectively. The adsorption of H(g) without dissociating H(ad) is found to be negligible. In the reaction pathway forming $H_2$, most of the reaction energy is carried by $H_2(g)$. Although the majority of $H_2(g)$ molecules are produced in sub-picosecond, direct-mode collisions, there is a small amount of $H_2(g)$ produced in multiple impact collisions, which is characteristic of complex-mode collisions. On the fully covered surface, it has been shown that the formation of $H_2(g)$ is of major importance. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. At gas temperature of 1800 K and surface temperature of 300 K, the probability of the $H_2(g)$ formation reaction is 0.082. In this case, neither the gas atom trapping nor the displacement reaction has been found.

Keywords

References

  1. Lim, S. H.; Ree, J.; Kim, Y. H. Bull. Korean Chem. Soc. 1999, 20, 1136
  2. Weinberg, W. H. In Dynamics of Gas-Surface Interactions; Rettner, C. T.; Ashfold, M. N. R., Eds.; Royal Society of Chemistry: 1991; pp 171-219
  3. Harris, J.; Kasemo, B. Surf. Sci. 1981, 105, L281 https://doi.org/10.1016/0039-6028(81)90004-2
  4. Harris, J.; Kasemo, B.; Tornqvist, E. Surf. Sci. 1981, 105, L288 https://doi.org/10.1016/0039-6028(81)90005-4
  5. Waltenburg, H. N.; Yates, J. T. Jr. Chem. Rev. 1995, 95, 1589 https://doi.org/10.1021/cr00037a600
  6. Doren, D. J. Adv. Chem. Phys. 1996, 95, 1 https://doi.org/10.1002/9780470141540.ch1
  7. Adelman, S. A. J. Chem. Phys. 1979, 71, 4471 https://doi.org/10.1063/1.438200
  8. Tully, J. C. J. Chem. Phys. 1980, 73, 1975 https://doi.org/10.1063/1.440287
  9. Struve, W. S.; Krenos, J. R.; McFadden, D. L.; Herschbach, D. R. J. Chem. Phys. 1975, 62, 404 https://doi.org/10.1063/1.430485
  10. Kim, Y. H.; Ree, J.; Shin, H. K. J. Chem. Phys. 1998, 108, 9821 https://doi.org/10.1063/1.476457
  11. Koleske, D. D.; Gates, S. M.; Jackson, B. J. Chem. Phys. 1994, 101, 3301
  12. Gates, S. M.; Kunz, R. R.; Greenlief, C. M. Surf. Sci. 1989, 207, 364 https://doi.org/10.1016/0039-6028(89)90129-5
  13. Radeke, M. R.; Carter, E. A. Phys. Rev. B 1996, 54, 11803 https://doi.org/10.1103/PhysRevB.54.11803
  14. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: 1979; pp 250-251
  15. Van de Walle, C. G.; Street, R. A. Phys. Rev. B 1995, 51, 10615 https://doi.org/10.1103/PhysRevB.51.10615
  16. Kratzer, P.; Hammer, B.; Norskov, J. K. Phys. Rev. B 1995, 51, 13432 https://doi.org/10.1103/PhysRevB.51.13432
  17. Kratzer, P. J. Chem. Phys. 1997, 106, 6752 https://doi.org/10.1063/1.473672
  18. Tully, J. C.; Chabal, Y. J.; Raghavachari, K.; Bowman, J. M.; Lucchese, R. R. Phys. Rev. B 1985, 31, 1184 https://doi.org/10.1103/PhysRevB.31.1184
  19. Koleske, D. D.; Gates, S. M.; Schultz, J. A. J. Chem. Phys. 1993, 99, 5619 https://doi.org/10.1063/1.465955
  20. Koleske, D. D.; Gates, S. M.; Jackson, N. J. Chem. Phys. 1994, 101, 3301
  21. Buntin, S. A. J. Chem. Phys. 1996, 105, 2066 https://doi.org/10.1063/1.472077
  22. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 1996, 104, 742 https://doi.org/10.1063/1.470799
  23. Ree, J.; Shin, H. K. J. Chem. Phys. 1999, 111, 10261 https://doi.org/10.1063/1.480375
  24. Mullins, C. B.; Rettner, C. T.; Auerbach, D. J. J. Chem. Phys. 1991, 95, 8649 https://doi.org/10.1063/1.461244

Cited by

  1. The Effect of Medium on Rate and Mechanism: Aminolysis ofO-4-Nitrophenyl Thionobenzoate in MeCN and H2O vol.68, pp.20, 2003, https://doi.org/10.1021/jo034637n
  2. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods vol.25, pp.12, 2002, https://doi.org/10.5012/bkcs.2004.25.12.1822
  3. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods vol.25, pp.12, 2002, https://doi.org/10.5012/bkcs.2004.25.12.1822