DOI QR코드

DOI QR Code

Computational Study of Catechol-(H2O)n(n=1-3) Clusters


Abstract

Computations are presented for the catechol-$(H_2O)_n$ (n = 1-3) clusters. A variety of conformers are predicted,and their relative energies are compared. Binding energies of the clusters are computed, and detailed analysis is presented on the harmonic frequencies of stretching modes involving the hydrogen bonding in the clusters, comparing with the experimental observations.

Keywords

References

  1. Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161 https://doi.org/10.1021/cr960149m
  2. Cappelli, C.; Mennucci, B.; da Silva, C. O.; Tomasi, J. J. Chem. Phys. 2000, 112, 5382. https://doi.org/10.1063/1.481108
  3. Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B. Chem. Phys. 1998, 239, 49. https://doi.org/10.1016/S0301-0104(98)00306-1
  4. Auspurger, J. D.; Dykstra, C. E.; Zwier, T. S. J. Phys. Chem. 1993, 97, 980. https://doi.org/10.1021/j100107a002
  5. Fredericks, S. Y.; Jordan, K. D.; Zwier, T. S. J. Phys. Chem. 1996, 100, 7810. https://doi.org/10.1021/jp9535710
  6. Garrett, A. W.; Zwier, T. S. J. Chem. Phys. 1992, 96, 3402. https://doi.org/10.1063/1.461941
  7. Kim, K. S.; Lee, J. Y.; Choi, H. S.; Kim, J.; Jang, J. H. Chem. Phys. Lett. 1997, 265, 497. https://doi.org/10.1016/S0009-2614(96)01473-X
  8. Garrett, A. W.; Severance, D. L.; Zwier, T. S. J. Chem. Phys. 1992, 96, 7245. https://doi.org/10.1063/1.462429
  9. Pribble, R. N.; Hagemeister, Zwier, T. S. J. Chem. Phys. 1997, 106, 2145. https://doi.org/10.1063/1.473784
  10. Janzen, Ch.; Spangenberg, D.; Roth, W.; Kleinermanns, K. J. Chem. Phys. 1999, 110, 9898. https://doi.org/10.1063/1.478863
  11. Watanabe, H.; Iwata, I. J. Chem. Phys. 1996, 105, 420. https://doi.org/10.1063/1.471918
  12. Watanabe, T.; Ebata, T.; Tanabe, S.; Mikami, N. J. Chem. Phys. 1996, 105, 408.
  13. Gerhards, M.; Kleinermanns, K. J. Chem. Phys. 1995, 103, 7392. https://doi.org/10.1063/1.470310
  14. Watanabe, T.; Ebata, T.; Fujii, M.; Mikami, N. Chem. Phys. Lett. 1993, 115, 347.
  15. Feller, D.; Feyereisen, M. W. J. Comp. Chem. 1993, 14, 1027. https://doi.org/10.1002/jcc.540140904
  16. Oikawa, A.; Abe, H.; Mikami, N.; Ito, M. J. Phys. Chem. 1993, 87, 1027.
  17. Pimental, G. C.; McClellan, A. L. The Hydrogen Bond; Freeman and Company: San Francisco, 1960.
  18. Zwier, T. S. Annu. Rev. Phys. Chem. 1996, 47, 205. https://doi.org/10.1146/annurev.physchem.47.1.205
  19. Wickleder, C.; Henseler, D.; Leutwyler, S. J. Chem. Phys. 2002, 116, 1850. https://doi.org/10.1063/1.1431282
  20. Ivanova, G.; Bratovanova, E.; Petkov, D. J. Peptide Science 2002, 8, 8. https://doi.org/10.1002/psc.362
  21. Gerhards, M.; Unterberg, C.; Kleinermanns, K. Phys. Chem. Chem. Phys. 2000, 2, 5544.
  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1995.฀㟅頃粺Ȁ粺Ȁ̀￿￿Ā쑠⨀᐀ὸက烗舀삵﾿缀烲舀舀?⨀麊合朂฀䙷堀฀섂考粺Ȁ粺Ȁ̀￿￿尀ὸ꼀㫅頃阔逃䨀￿㟅頃䤀ᡧ⨀?⨀ࠀ㟅頃䨀̀Ā悺㊯倀ⱗ♥딿Ȁ⡨⨀฀ᄂ考暺Ȁ暺Ȁ̀￿￿硧⨀⡨⨀
  23. Gerhards, M.; Perl, W.; Scumm, S.; Henrichs, U.; Jacoby, C.; Kleinermanns, K. J. Chem. Phys. 1996, 104, 9362. https://doi.org/10.1063/1.471682
  24. Tarakeshwar, P.; Kim, K. S.; Kraka, E.; Cremer, D. J. Chem. Phys. 2001, 115, 6001
  25. Kleinermanns, K. (private communication).
  26. Cheong, W. J.; Kim, C. Y. Bull. Korean Chem. Soc. 2000, 21, 351.
  27. Lee, C. S.; Cheong, W. J. J. Liq. Chrom. & Rel. Technol. 1999, 22, 253. https://doi.org/10.1081/JLC-100101658
  28. Lee, C. S.; Cheong, W. J. J. Chromatogr. A 1999, 848, 9. https://doi.org/10.1016/S0021-9673(99)00404-5
  29. Lee, C. S.; Cheong, W. J. J. Chromatogr. A 2001, 848, 9.
  30. Ahn, D.-S.; Park, J.-Y.; Lee, S.; Cheong, W. J. (to be published).

Cited by

  1. Computational Study of Hydrogen Bonding in Substituted Phenol-Acetonitrile-Water Clusters vol.55, pp.3, 2013, https://doi.org/10.1002/jccs.200800078
  2. Reaction Kinetics of Catechol (1,2-Benzenediol) and Guaiacol (2-Methoxyphenol) with Ozone vol.119, pp.26, 2015, https://doi.org/10.1021/acs.jpca.5b00174
  3. Theoretical investigation of gas-phase molecular complex formation between 2-hydroxy thiophenol and a water molecule vol.19, pp.3, 2017, https://doi.org/10.1039/C6CP08442G
  4. Theoretical analysis of hydrogen bonding in catechol–n(H2O) clusters (n = 0…3) vol.12, pp.18, 2010, https://doi.org/10.1039/b922203k
  5. Computational Study of σ- and π-type Hydrogen Bonding in Acetonitrile-Water Clusters vol.24, pp.5, 2002, https://doi.org/10.5012/bkcs.2003.24.5.545
  6. Hydrogen Bonding in Aromatic Alcohol-Water Clusters: A Brief Review vol.24, pp.6, 2002, https://doi.org/10.5012/bkcs.2003.24.6.695
  7. Computational Study of Hydrogen Bonding in Phenol-acetonitrile-water Clusters vol.25, pp.8, 2004, https://doi.org/10.5012/bkcs.2004.25.8.1161