References
- Pena, M. A.; Gómez, J. P.; Fierro, J. L. G. Appl. Catal. A 1996,144, 7. https://doi.org/10.1016/0926-860X(96)00108-1
- Tsang, S. C.; Claridge, J. B.; Green, M. L. H. Catal. Today 1995,23, 3. https://doi.org/10.1016/0920-5861(94)00080-L
- Armor, J. N. Appl. Catal. A 1999, 176, 159. https://doi.org/10.1016/S0926-860X(98)00244-0
- Rostrup-Nielsen, J. R. In Catalytic Steam Reforming Catalysis, Science & Technology; Anderson, J. R.; Boudart, M., Eds.; Springer: Berlin, 1984; vol. 5.
- Padovani, C.; Franchetti, P. Giron. Chem. Ind. Applicata 1933, 15,429.
- Prettre, M.; Eichner, C. H.; Perrin, M. Trans. Faraday Soc. 1946,43, 335.
- Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.;Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344,319. https://doi.org/10.1038/344319a0
- Roh, H.-S.; Dong, W.-S.; Jun, K.-W.; Park, S.-E. Chem. Lett.2001, 88.
- Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Park, S.-E.; Joe, Y.-I. J. Mol.Catal. A 2002, 181, 137. https://doi.org/10.1016/S1381-1169(01)00358-2
- Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Park, S.-E.; Baek, Y.-S.Catal. Lett. 2001, 74, 31. https://doi.org/10.1023/A:1016699317421
- Choudhary, V. R.; Mamman, A. S.; Sansare, D. Angew. Chem. Int.Ed. 1992, 31, 1189. https://doi.org/10.1002/anie.199211891
- Dong, W.-S.; Roh, H.-S.; Liu, Z.-W.; Jun, K.-W.; Park, S.-E. Bull.Korean Chem. Soc. 2001, 22, 1323.
- Choudhary, V. R.; Rajput, A. M.; Prabhakar, B.; Mamman, A. S.Fuel 1998, 77, 1803. https://doi.org/10.1016/S0016-2361(98)00072-6
- Chang, J.-S.; Park, S.-E.; Chon, H. Appl. Catal. A 1996, 145,111. https://doi.org/10.1016/0926-860X(96)00150-0
- Bartholomew, C. H.; Pannell, R. B. J. Catal. 1980, 65, 390. https://doi.org/10.1016/0021-9517(80)90316-4
- Hadjiivanov, K.; Mihaylov, M.; Klissurski, D.; Stefanov, P.;Abadjieva, N.; Vassileva, E.; Mintchev, L. J. Catal. 1999, 185,314. https://doi.org/10.1006/jcat.1999.2521
- Beebe, T. P. Jr.; Goodman, D. W.; Kay, B. D.; Yates, J. T. Jr. J.Chem. Phys. 1987, 87, 2305. https://doi.org/10.1063/1.453162
- Trimm, D. L. Catal. Today 1999, 49, 3. https://doi.org/10.1016/S0920-5861(98)00401-5
- Au, C. T.; Wang, H. Y.; Wan, H. L. J. Catal. 1996, 158, 343. https://doi.org/10.1006/jcat.1996.0033
- Shen, S.; Li, C.; Yu, C. Stud. Surf. Sci. Catal. 1998, 119, 765. https://doi.org/10.1016/S0167-2991(98)80524-7
- Jin, R.; Chen, Y.; Li, W.; Cui, W.; Ji, Y.; Yu, C.; Jiang, Y. Appl.Catal. A 2000, 201, 71. https://doi.org/10.1016/S0926-860X(00)00424-5
- Hu, Y. H.; Ruckenstein, E. J. Catal. 1996, 158, 260. https://doi.org/10.1006/jcat.1996.0025
- Roh, H.-S.; Jun, K.-W.; Dong, W.-S.; Park, S.-E.; Joe, Y.-I. Chem.Lett. 2001, 666.
- Kochloefl, K. In Handbook of Heterogeneous Catalysis; Ertl, G.,Knozinger, H., Weitkamp, J., Eds.; VCH: Veinheim, 1997; vol. 4,p 1820.
Cited by
- Selective hydrodeoxygenation of bio-oil derived products: ketones to olefins vol.5, pp.7, 2015, https://doi.org/10.1039/C5CY00367A
- methanation on Ni@MOF-5 via control of active species dispersion vol.51, pp.9, 2015, https://doi.org/10.1039/C4CC08733J
- Carbon Dioxide Reforming of Methane over Ni/θ-Al2O3 Catalysts: Effect of Ni Content vol.23, pp.8, 2002, https://doi.org/10.5012/bkcs.2002.23.8.1166
- Methane-reforming reactions over Ni/Ce-ZrO2/θ-Al2O3 catalysts vol.251, pp.2, 2002, https://doi.org/10.1016/s0926-860x(03)00359-4
- A highly active catalyst, Ni/Ce–ZrO2/θ-Al2O3, for on-site H2 generation by steam methane reforming: pretreatment effect vol.28, pp.12, 2002, https://doi.org/10.1016/s0360-3199(03)00029-6
- Thermal decomposition study of silica-supported nickel catalyst synthesized by the ammonia method vol.281, pp.1, 2002, https://doi.org/10.1016/j.molcata.2007.11.033