DOI QR코드

DOI QR Code

Preparation and Characterization of Hybrid Silica-Poly(ethylene glycol) Sonogel

  • Jung, Hwa-Young (School of Materials Science and Engineering and Institute of the Advanced Materials, Inha University) ;
  • Gupta, Ravindra K. (School of Materials Science and Engineering and Institute of the Advanced Materials, Inha University) ;
  • Seo, Dong-Won (School of Materials Science and Engineering and Institute of the Advanced Materials, Inha University) ;
  • Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics Inha University) ;
  • Whang, Chin-Myung (School of Materials Science and Engineering and Institute of the Advanced Materials, Inha University)
  • Published : 2002.06.20

Abstract

An inorganic-organic hybrid system, silica-poly(ethylene glycol) songel is reported. This system was prepared via sol-gel method by varying varous processing variables. e.g. ultrasonic radiation time, gelling temperanture, PEG content and its molecular weight. Various experimental techniques wee employed to analyze the morphological, mechanical and optical properties of the system. The results were discussed in the light of existing theories. The sonogel system exhibited the common features of inorganic-organic hybrids. $SiO_2-10$ wt% PEG sonogel exhibited the morphological and optical properties superior to those reported earlier for the classic gels and found suitable for device applications.

Keywords

References

  1. Brinker, C. J.; Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: London, U.K., 1990.
  2. Pierre, A. C. Introduction to Sol-Gel Processing; Kluwer Academic Publishers: Massachusetts, U.S.A., 1998.
  3. Wright, J. D.; Sommerdijk, N. A. J. M. Sol-Gel Materials: Chemistry and Applications; Phillips, D., OBrien, P., Roberts, S., Eds.; Gordon and Breach Science Publishers: Amsterdam, Netherlands, 2001.
  4. Portier, J.; Choy, J. H.; Subramanian, M. A. Int. J. Inorganic Mater. 2001, 5,581. https://doi.org/10.1016/S1466-6049(01)00103-9
  5. Hench, L. L. Sol-Gel Silica; Properties, Processing and Technology Transfer; Noyes Publications: New Jersey, U.S.A., 1998.
  6. Martin, J.; Hosticka, B.; Lattimer, C; Norris, P. M. J. Non-Cryst. Solids 2001, 285, 222. https://doi.org/10.1016/S0022-3093(01)00457-4
  7. Higuchi, T.; Kurumada, K.; Nagamine, S.; Lothongkum, A. W.; Tanigaki, M. J. Mater. Sci. 2000, 35, 3237. https://doi.org/10.1023/A:1004811019300
  8. Chen, W.; Feng, PL; He, D.; Ye, C. J. Appl. Polym. Sci. 1998, 67, 139. https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<139::AID-APP16>3.0.CO;2-X
  9. Ribeiro, S. J. L.; Dahmouche, K.; Ribeiro, C. A.; Santilli, C. V.; Pulchinelli, S. H. J. Sol-Gel Sci. Tecnol. 1998,13, 427. https://doi.org/10.1023/A:1008673211834
  10. Vong, M. S. W.; Bazin, N; Sermon, P. A. J. Sol-Gel Sci. Technol. 1997, 8, 499.
  11. Choi, S. I.; Shin, D. Y.; Han, S. M.; Lee, S. B. J. Korean Ceram. Soc. 1993, 30, 838.
  12. Sato, S.; Murakata, T.; Suzuki, T.; Ohgawara, T. J. Mater. Sci. 1990, 25, 4880. https://doi.org/10.1007/BF01129956
  13. Ota, R.; Watanabe, A.; Fukunaga, J.; Yoshida, N. J. Jpn. Ceram. Soc. 1989, 5,231.
  14. Dahmouche, K.; Atik, M.; Mello, N. C; Bonagamba, T. J.; Panepucci, H.; Aegerter, M. A. J. Sol-Gel Sci. Technol. 1997, 8, 711.
  15. Zarzycki, J. Ultrastructure Processing of Advanced Materials; Uhlmann, D. R., Ulrich, D. R., Eds.; John Wiley & Sons: New York, U.S.A., 1992; p 135.
  16. Equivias, L.; Zarzycki, J. Ultrastructure Processing of Advanced Ceramics; Mackenzie, J. D., Ulrich, D. R., Eds.; John Wiley & Sons: New York, 1988; p 255.
  17. Donatti, D. A.; Vollet, D. R. J. Sol-Gel Sci. Technol. 2000,17, 19. https://doi.org/10.1023/A:1008748702656
  18. Donatti, A.; Vollet, D. R.; Ruiz, A. I. J. Sol-Gel Sci. Technol. 2000,18, 5. https://doi.org/10.1023/A:1008717027627
  19. Rosa-Fox, N. de la.; Esquivias, L.; Zarzycki, J. J. Mater. Sci. Letters 1991,10, 1237. https://doi.org/10.1007/BF00720933
  20. Morita, K.; Hu, Y; Mackenzie, J. D. Mater. Res. Soc. Symp. Proc. 1992, 2 71, 693.
  21. Stauffer, K.; Conoglio, A.; Adam, M. Adv. Pol. Sci. 1982, 44, 103. https://doi.org/10.1007/3-540-11471-8_4
  22. Leung, Y K.; Eichinger, B. E. J. Chem. Phys. 1984, 80, 3877. https://doi.org/10.1063/1.447169
  23. Pierre, A. C. Ultrastructure Processing of Advanced Materials; Uhlmann, D. R., Ulrich, D. R., Eds.; John Wiley & Sons: New York, U.S.A., 1992; p 103.
  24. Thomas, I. L.; McCorkle, K. H. J. of Colloid and Interf. Sciences 1971,36,110. https://doi.org/10.1016/0021-9797(71)90246-3
  25. Klein, L. C; Beaudry, C. L. SPIE1997, 3136, 20.
  26. Takahashi, R. T.; Nakanishi, K.; Soga, N. J. Sol-Gel Sci. Technol. 2000,17,7. https://doi.org/10.1023/A:1008753718586

Cited by

  1. vol.12, pp.12, 2002, https://doi.org/10.1039/B205335G
  2. Bioinspired Insights into Silicic Acid Stabilization Mechanisms: The Dominant Role of Polyethylene Glycol-Induced Hydrogen Bonding vol.136, pp.11, 2014, https://doi.org/10.1021/ja411822s
  3. Polymer Sol–Gel Composite Inverse Opal Structures vol.7, pp.11, 2015, https://doi.org/10.1021/acsami.5b00656
  4. Optimising sodium silica gel for Ferroin immobilization vol.24, pp.4, 2017, https://doi.org/10.1007/s10934-016-0331-8
  5.  PEG ormolyte vol.36, pp.5, 2003, https://doi.org/10.1088/0022-3727/36/5/316
  6. Vibrational spectroscopic studies of sol–gel derived physical and chemical bonded ORMOSILs vol.351, pp.5, 2005, https://doi.org/10.1016/j.jnoncrysol.2005.01.004
  7. Microstructural and mechanical properties of silica–PEPEG polymer composite xerogels vol.54, pp.19, 2002, https://doi.org/10.1016/j.actamat.2006.06.055