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The effect of concentration fluctuations on the changes of azimuth and ellipticity are analytically obtained in a 
binary chiral liquid mixture, when the incident light is completely linearly polarized above (or below) the 
horizontal at 45o. The important results are as follows; (1) When the binary liquid is in the critical region far 
from the critical point, the ellipticity change is proportional to isothermal compressibility factor and the fifth 
order of frequency. As the system approaches very close to the critical point, the change is proportional to the 
third order of frequency and shows the logarithmic divergence. (2) In the case that the system is in the critical 
region far from the critical point, the azimuth change is solely due to the molecular contribution. As the system 
approaches to the critical point, the effect of fluctuations becomes important. If it is in the extreme close to the 
critical point, the term due to the concentration fluctuations is comparable to or larger than the molecular 
contribution.
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Introduction

In the previous paper1 the authors have obtained analytic 
results for the phase changes of a forward-scattered light in 
an isotropic fluid, when the incident light is completely 
linearly polarized above (or below) the horizontal at 45o, 
using the formalism given by Barron2 and the theory for the 
dielectric tensor developed by one of the authors and his 
coworker.3 The result is so effective that we could discuss the 
effect of density fluctuations on the azimuth and ellipticity 
of the scattered light in the critical region.

In this paper we shall extend the results to a binary liquid 
mixture composed of an optically active solute and an 
optically nonactive solvent. The mixture is more suitable for 
experimental verification than the pure fluid. The basic 
difference with the latter is that there is one more extra 
variable in the mixture, i.e., the concentration fluctuations on 
the phase changes of the forward-scattered light in the 
critical region of a binary liquid mixture. The form of the 
correlation function to be used is the Ornstein-Zernike form. 
In the next section we obtain the explicit results for the 
azimuth and ellipticity changes are discussed in the limiting 
cases in the critical region.

Theory

Let us consider monochromatic light propagating along z 
and incident on a scattering cell, which is assume to be an 
infinitely wide lamina (xy plane) with the infinitesimal 
thickness relative to the wavelength of light. If only a small 
fraction of the wave is scattered by the fluctuating chiral 
fluid in the scattering cell, the disturbance reaching a point f 

at Ro a large distance from the lamina in the forward 
direction is essentially the original light plus a contribution 
due to the scattering by the fluctuating fluid in the lamina. 
The total light at f is the sum of the primary wave and the 
scattered light from the lamina, which is given as1,2

Ea = E也 + 2ic可侦씨Eo於xpg(쓰0 -1)], ⑴

where c is the light velocity in vacuum; f g is the forward 
component of the macroscopic polarizability density tensor 
of the chiral fluid, which will be discussed in detail later; dz 
is the thickness and E°g is the incident light. From now on 
we shall take units such that c is unity.

The light E°g can be written as the sum of two coherent 
fields completely linearly polarized in the x and y directions

_〉 一 八一八
E0 = E0xX+E0yy. (2)

The general pure polarization state can be described in terms 
of the ellipticity, n and azimuth, 04. Then, the complex 
amplitude may be written as

7? 八 一 • .八. wEo = Eo[( cosOcosn + isrnOsinn)x

+(smOcosn + zcos3sinn)y] (3)

where

n n n n
-2 - e-2 二- - n 4. (4)

The six basic polarization states of the incident field are 
given in the Table 1.

The Stokes’ parameters for the incident and scattered 
lights are defined as2,5,6
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Table 1. The definition of six basic polarized lights

Kind of polarized lights 0 n
horizontally linearly polarized light n/2 0
vertically linearly polarized light 0 0
linearly polarized light above the horizontal at 45o n/4 0
linearly polarized light below the horizontal at 45o -n/4 0
right circularly polarized light 0 -n/4
left circularly polarized light 0 n/4

M0 =〈 E0xE0x〉—〈 E0yE0y〉，【0 = ( E0xE0X + ( E0yE0y)，

S。= -i (〈 E0 xEy -〈 E0yE0 x〉),
C0 = -(〈E0xE*y〉+〈E0yE0x〉)， (5)

Mf =〈 ExE：) -〈 EyE*), If =〈 EE*〉+〈 EE*〉，

Sf = -i(〈 E£*  -〈 EyE^), Cf = -(〈 Ef +〈 EE*))，

where the subscripts 0 and f in the above definition denote 
the incident and total forward lights, respectively, and the 
sharp brackets represent the statistical average.

The Stokes’ parameter If of the transmitted wave is, using 
Eq.⑴

if =〈 EE*)+〈 Ef

=[(知+釁戶씨 e 厂 ‘霁써

+(卽+覺*旳(3广쓰#Mj]〈 快》.

Using the definition of Stokes’ parameters given in Eq. (5), 
we obtain If and the other parameters up to the first order of 
dy as follows

If = 10-쓰血[( Yx + Yyy)i0 + ( Yx - Yyy)M0

-(Yxy + Yyx) C0 - i(Yxy - Yyx) S0] dz， (6a)

Mf =〈 EE*) -〈 Eyf

= M0 - 쓰Im[( Yx + Yyy)i0 + (Yxx - Yy)M0

-(Yy + Yyx) C0-i (Yxy - Yyx )S0] dz, (6b)

Cf =〈 EE*)+〈 Eyf

= C0 + 쓰Im[(Yxy + Yyx)i0-(Yxy - YyxVM

-(Yxx + Yyy) C°+i (Yxx - Yyy 哓]dz, (6c)

Sf = -i〈ExEf)-〈EyE:)

= S0 + 쓰Re[(Yxy - Yyx)i0 - (Yfy + Yyx)M0

-(Yx - Yyy) C0 + i(Yx + Yyy哓]dz, (6d) 

In Eqs. (6) and denote the real and imaginary parts, 
respectively. The changes of intensity, azimuth and ellipti­
city are effectively infinitesimal so we can write if - i - di, 
Of - 0- dO and % - n~ dn. The differential equations for 
the changes of intensity, azimuth and ellipticity with the 
respect to dy are given as

di f f f f
dz = 一/이1m(Y；x + lyy) + Im<7xx 一 iyy)cos2ncos20

-Im( Yy + Y。cos2nsin20 一 Re( Yy - Yyx) sin2n]
(7a)

--으 — 쓰J---------- + J )cos20 — RefJ — J )sin2O]tan2ndz 2 I [im( Yxx + iyy)cos2" Re( Ixx iyy)s1n2(긴 tan2n

丄 [Im(Yx-Yy)sin20 + Im(&누么)cos20]
+ '------------ ，- -  ------------

cos2n

-Im (Yy - Yyx) (7b)

d^ ~ 쓰^ ^^ (4 nf Rafnf -I- 4 fldz 一 2 I -Re(Yxx - 7yy)sin20 - Re(Yy + 7yx)cos20

+ [Im( YXx - Yyy)cos20 - Im(Yy + Yyx )sin20]sin2n

+ Re(Yy-Yyx)cos2n} , (7c)

where we have used the relations

+ W) s 2 dO tan2 Of — tan20 ——-—, 
cos22O

tan2 nf - tan2 n - 2叩 , (8)

For the linearly polarized light above (below) the horizontal 
at 45o, we obtain

의 = 쓰i[-Im^/ + Y ) + Im(Y + Y )] (9a)dz 2丄 L *xx •'y'^^ ~ Yxy Jyxn， V，아丿

— = 쓰i[+Im(Y - Y ) - Im(yX - Y )] (9b)dz 4丄 L—Lml ixx /yy/ 丄丄丄” / xy Zyx/i, l八〃

dn 쓰 f f f f
dz = -4[+Re( 7xx - lyy)- Re( ixy -原)]，(9c)

The sign 士 corresponds to the lights polarized linearly above 
and below the horizontal at 45o, respectively. The first 
equation, Eq. (9a) describes the absorption; Eq. (9b) express­
es an azimuth change due to linear dichroism brought about 
through a differential absorption of the two linearly polariz­
ed components of the incident light resolved along the x and 
y directions and imaginary part of antisymmetric polariz­
ability tensor component; Eq. (9c) shows the corresponding 
ellipticity change due to linear birefringence, that is, Kerr 
effect and real part of antisymmetric polarizability tensor 
component.

Let us consider an isotropic chiral fluid. The antisym­
metric part in Eq. (9a) can be neglected, since it is very small 
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compared with the symmetric part. Also, the part due to the 
linear dichroism and Kerr effect in Eqs. (9b) and (9c) can be 
neglected. Integration over a finite path length l leads to the 
following results

f f
I = /疗叶-万血(您 + Yyy“， (10a)

M = 쓰Im f - Yyx)， (10b)

An =-罕Re(Yfy - Yyx)， (10c)

where Io is the initial intensity and the explicit form of f g 

will be given later.
Let us consider the spatial correlations in a binary liquid 

mixture composed of an optically active solute and an 
optically nonactive solvent, denoted by 1 and 2, respectively. 
There are two correlations due to density fluctuations at 
constant concentration and concentration fluctuations at 
constant density. Let us define two kinds of fluctuating 
quantities A and B as

2 2
A = '勇 A 心,B =3 BvPv , (11)

卩=1 v=1

where An and Bn are the molecular constants of the vth 
species of the mixture and Pv is the density of the vth 
component. With the static approximation we may write the 
correlation function as

2
SAB(r 一 礼t 一 t'、) = £ A卩Bv<Ap卩(r，t)Apv(，t?)>.

W1 (12)

Referring to the detailed discussion to ref. 7, the correlation 
function can be written in terms of two kinds of correlation 
functions, that is,

Sab = PO a° B° Sz + p2 A1 B1 S。， (13)

where

A0 = A1X； + A2・x2，A1 = (A1 v2 -A2v1 )/v. (14)

In Eq. (13) P0 is the density of the mixture at equilibrium 
and Sz and Sc are the correlation functions of fluctuating 
reduced density Ag and mole fraction An defined as

Sz( r-礼 t -少=〈Ag( r, t )Ag( r‘,t 八)〉,

Sc( r - r, t -1) =〈Ax」r, t)Ax】(r ,t* ). (15)

In Eq. (14) x01 is the mole fraction of the solute at 
equilibrium and v and V】are the equilibrium values of the 
molar volume of the mixture and the partial molar volume of 
the solute, respectively. We may use the static approximation 
for the correlation function in the case that the velocity of a 
molecule in the fluid is very small compared with the light 

velocity. With the aid of the Onstein-Zernike approximation 
the Fourier transforms for the correlation functions are

Sg(I-k百-小)=2n8(①-小)Sg(k- k),

Sc( k - k ,a)—百)=2nS(^-百)S°( k - k); (16)

where
一｝ .一 2 -1
Sg(k) = kgl 1 + (孙)],
„ » 2 -1
Sc(k) = kg 1 + (&k)];

k=(pogn)-1, gn=[糸] (17)

P,T,

In Eq. (17) and kt are the Boltzmann factor and 
isothermal compressibility factor, respectively; gg and g are 
the correlation lengths of density and concentration 
fluctuations, respectively and g is the mean molar Gibbs free 
energy of the mixture. In general Sg is small compared to Sc 
and negligibly small in the critical region of a binary liquid 
mixture. This is due to the fact that kt is finite whereas g-1 
becomes infinite. Thus, we only consider the correlation 
function of concentration fluctuations especially in the 
critical region of the mixture.

Referring the detailed derivation to Ref. 7, fg is the 
forward component of the macroscopic polarizability 
density tensor of the mixture, which is given as

Ya g(k百)=Ya g(k,百)+ Yag (k,百)；

:兀?八、一 S (쳐P0)2
7ag(k，百)=a0P0&ag ~

(2兀尸

x J dk d百 Sc(k-k，百一百)Kagk(百'),
(19a)

(18)

"K。
Yag (k百)=2goPo[ 1 - aoPof(ak,arn)]8agyk7

c _ 1 7」22 a。go Po ,
—一-号JJ dk‘d百SC(k- k百-百)f(akk,a百)W 
(2n)4

2히g0P0「1 _o “ . Slcc
------- ~[2 - a；Pof(. 시k, 시百)」JJ dk d 百 S：

x (k - k百-百)Kaa(k百)凯邓夕

c _ 1 7」2

、으스0P。]；- X(°aoPof( ak, 시百)]JJ 旅 dof S2

x (k - k 百-百)&aa，丿"Ka,g(k，百)

2弟(허) B0p3u > » »
+ 1 - ""JJ dk'd百 S2(k - k百一百)

(2n)4

x K1(k百')灼传',百)[1 - a0Pof(ak,a百)屁内,(19b) 

where a0, go, a0, gO and X； are defined as
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_0
ao = 00

a01 X1 + a02 x2, B0 = A)1x0,

a0 =(«01 % - «02^1 )/v, 30 = Q01V2/V. （20）

«01 and P01 are the second and third order polarizability 
constants of the chiral solute molecule, respectively; a°2 is 
the second order polarizability constant of the solvent 
molecule; 8(邛 and 8(邛丫 are the Kronecker delta and Levi- 
Civita tensor, respectively and the explicit forms of the 
function f(ak, 시") and propagators, Ka^ and K1 are K2 

given in ref. 3.

Results

First let us assume that the light varies slowly over the 
molecular dimension. This assumption is obviously valid in 
the nonresonant frequency region where the frequency 
dependence of the molecular polarizability tensors can be 
neglected and thus it can be said that the constants are real in 
the nonresonant region. Since the light intensity was 
discussed in detail,8 the ^phase changes are obtained. The 
antisymmetric part Ya3 (k,") is responsible for the changes 
of ellipticity and azimuth in an isotropic chiral fluid. With 
the aid of the explicit forms of propagators and Eq. (17), we 
may obtain the following results.

(A). The ellipticity change
The ellipticity change is given as

An = 쓰：Re( Yy - Yyx)= 쓸Re Yy = -Ac" l侬n], (21) 

where the antisymmetric property of Ya3 (k,쓰) is used and
1 「1 -|2_1-1 MbTk

A = -—— :- (% + 2 )(£。— 1) ^0 00^ I —-— I, (22)c 24ttL3 0 0 _| "W" f 丿, v 7

[An] = [ 3 — (햬 + x0 하 )p0 ]

X 时+4-{1 + -늬ln( 1 + 切2)] 
L2 p V 4p丿 」

「 1 , c 2 1
+ X0a0p0 2 —----- 2p-ln( 1 + 4p2)

- 2p -

%。+ 2「4p . 2
+ W——4P-2 — ln( 1+4p2) , (23)

4%0 |_1 +4p _

with

p = nog쓰. (24)
When the above result is obtained, we have used the fact that 
if ak, 시쓰 <<1 the function f( ak, 시쓰) 二 1/3 and the 
dielectric constant at equilibrium &)is given as

1 , 2-0
1 + -- a0p0

%0 = 3_o . (25)
1-3 a0p0

It should be noted that 쓰 equals 2n over the wavelength of 

the light in vacuum, since the light velocity in vacuum is 
taken to be unity. The limiting properties of [An] are as 
follows:

(i). When p = n°g쓰<<1, then we have

[An] = -一으-- p (1 + 4p2)
1 %0 + 2八

+ 2x0 a0Pop2 V2 —气 2p2丿 + ..., (26)

so that

An( 쓰)=-6으[3(£0+2)] ($ 一 3x0 치 p0)

X 忒30屁丁化쓸l. (27)

When the fluid is far from the critical point, the azimuth is 
proportional to 쓸 and isothermal compressibility factor k.

(ii). In the extreme critical region where, p = n°g쓰 — 8 
we have

An(쓰) 〜A。[ 2--I+2-+x0 a0p0 V 2+頌.

-2 ,_0_1+ X1«0P0 ln(2p)](쓰,l. (28)

An is proportional to 쓸 and shows the logarithmic 
divergence in the extremely critical region extremely close to 
the critical point.

(B). The azimuth change, AO(쓰) in the critical region is 
given by

AO(쓰) = 쓸 Re(Yy — Yyx) = AO】 (쓰) + A% (쓰) + AO (쓰), 
4 (29)

where denotes the real part and the result of the calculations 
is written in three terms for convenience. The first term 
AO] (쓰) due to the molecular contribution given by

3n“ — 0 a
AO1 (쓰) = —----- --00p0쓰 l. (30)%0 + 2H

The rest is due to the correlation of the density fluctuations 
and given by the real part of the integrals in Eq. (19b). These 
integrals can be calculated when the correlation length is 
larger than the diameter of the molecule. The results are 
expressed as AO】쓰) and A63(쓰). The term, AO】쓰) is 

A% (쓰)

where a is the diameter of a molecule.
The third term A O3 (쓰) is given by

AO3(쓰) = Ac"3l \ [3 — (채 + X0a0)p0]
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x+ -如-(1 + --勺 tan 1 (2p) 
L6p 8p3 I 4p2 丿

+ G糸 1一+一쐬 cot-1
18 이 d 丿］ 2p2 丿

+ 2晶-2冲)}+O(()， 

(32) 

where A^ is given in Eq. (22) and \t\ is the absolute value of 
t defined as

&). (33)

The limiting properties of △%(©) are as follows:
(i) When p = %盘)<<1, △。2(")) dominates over 

△。3(">). Its magnitude may account to one-tenth of 
A^1 (")), depending on the Debye persistence length R 
defined by R-2 = p°kBTK^ .

(ii) When p>>1, A 63(")) becomes important. In the case 
of 1<vpvv| t\-1, we have

(a0Po)2(北日丁幻16血0甘)2 lpt,
(34)

which may become comparable to or larger than A 63 (2). It 
is due to the indirect coupling between two fluctuating parts 
of dipole densities via the equilibrium part of quadrupole 
density in the middle. In the extreme case where p\t\ >>1, 
we have

眺3尸-

△%(心- (a0Po)2(kBTK/32nn°g2)^21, (35)

The above result is independent of Q0. Its magnitude may 
become comparable to or larger than the term due to the 
molecular contribution, A 6】(2), depending on the Debye 
persistence length.

Conclusions

The effect of concentration fluctuations has been in detail 
obtained on the phase changes for a forward-scattered light 

in a binary chiral liquid mixture, when the incident light is 
completely linearly polarized above(or below) the horizontal 
at 45o. Let us summarize some important results:

(1) . When the binary liquid is in the critical region far 
from the critical point, the ellipticity change is proportional 
to isothermal compressibility factor and the fifth order of 
frequency (see Eq. (27)). As the system approaches very 
close to the critical point , the change is proportional to the 
third order of frequency and shows the logarithmic 
divergence (Eq. 28). This divergence should not be taken too 
seriously, since in the extreme critical region we must 
account for the eventual departure from the Ornstein- 
Zernike approximation.9

(2) . In the case that the system is in the critical region far 
from the critical point, the azimuth change is solely due to 
the molecular contribution, as shown in Eq. (30). As the 
system approaches to the critical point, the effect of 
fluctuations becomes important. If it is in the extreme close 
to the critical point, the term due to the concentration 
fluctuations is comparable to or larger than the molecular 
contribution (see Eq. (35)).
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