DOI QR코드

DOI QR Code

Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC

정전방사에 의한 PAN계 활성화 탄소 나노섬유 전극 제조와 EDLC 응용

  • Kim, Chan (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Jong-Sang (School of Chemical Eng. & Technology Chonbuk National University) ;
  • Lee, Wan-Jin (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Hyung-Sup (Technical Textile Research Team, KITECH(Korea Institute of Industrial Technology)) ;
  • Edie, Dan D. (Department of Chemical Engineering, Clemson University) ;
  • Yang, Kap-Seung (Faculty of Applied Chemical Engineering, Chonnam National University)
  • 김찬 (전남대학교 공과대학 응용화학공학부) ;
  • 김종상 (전북대학교 공과대학 화학공학부) ;
  • 이완진 (전남대학교 공과대학 응용화학공학부) ;
  • 김형섭 (한국생산기술연구원) ;
  • ;
  • 양갑승 (전남대학교 공과대학 응용화학공학부)
  • Published : 2002.08.01

Abstract

Poly(acrylonitrile)(PAN) solutions in dimethylformamide(DMF) were electrospun to prepare webs consisting of 400nm ultra-fine fibers. The webs were oxidatively stabilized, activated by steam and resulted to be activated carbon fibers(ACFs). The specific surface area was $800\~1230 m^2/g$, which showed a trend of a decrease of the surface area with an increase in activation temperature, showing opposite behavior to the other ACFs. The activation energy of the stabilized fibers for the steam activation was determined as 29.2 kJ/mol to be relatively low indicating the easier activation than that of other carbonized fibers. The ACF webs were characterized by pore size and specific surface uea which would be related to the specific capacitance of the electrical double layer capacitor (EDLC). The specific capacitances measured were 27 F/g, 25 F/g, 22 F/g at the respective activation temperature of $700^{circ}C,\;750^{\circ}C\;800^{\circ}C$, showing similar trend with the specific surface area i.e., the higher activation temperature was, the lower specific capacitance resulted.

PAN(polyacrylonitrile)을 DMF(dimethylformamide) 용매에 용해하여 정전방사법에 의해 평균 직경 400 nm의 나노섬유 웹을 제조하였다. 제조된 나노섬유 웹은 산화 안정화, 활성화 공정을 거쳐 활성화 탄소 나노섬유를 제조하여, 전기화학적 특성과 비축전 용량을 측73하였다. 활성화 탄소 나노섬유의 비표면적은 $1230m^2/g-800m^2/g$으로 일반 활성탄소 섬유의 거동과는 다르게 활성화 온도가 증가할수록 감소하는 경향을 나타냈으며, 활성화 에너지 값은 29.2kJ/mol로 활성화 온도에 크게 영향을 받지 않고, 급격한 반응이 일어남을 알 수 있었다. 비축전 용량은 활성화 온도가 $700^{\circ}C,\;750^{\circ}C,\;800^{\circ}C$의 경우 27 F/g, 25 F/g, 22 F/g으로 활성화 온도가 증가할수록 비표면적에 비례하여 낮아지는 경향을 나타냈다.

Keywords

References

  1. J. of The Electrochem. Soc. v.143 S. Sarangapani;B. V. Tilak;C. P, Chen https://doi.org/10.1149/1.1837291
  2. J. of Non-Cryatalline Solids v.225 R. Saliger;U. Fischer;C. Herta;J. Fricke https://doi.org/10.1016/S0022-3093(98)00104-5
  3. J. Mater. Res. v.16 M. Endo;Y. J. Kim;T. Maeda;K. Koshiba;K. Katayama;M. S. Dresselhaus https://doi.org/10.1557/JMR.2001.0468
  4. J. of The Electrochem. Soc. v.147 G. Salitra;A. Soffer;L. Eliad;Y. Cohen;D. Aurhach https://doi.org/10.1149/1.1393557
  5. Carbon Science v.1 S. Shiraishi;H. Kurihara;A. Oya
  6. Tanso v.199 T. Kyotani
  7. J. Electrostatics v.35 J. Doshi;D. H. Reneker https://doi.org/10.1016/0304-3886(95)00041-8
  8. Polymer v.40 C. J. Buchko;L. C. Chen;Y. Shen;D. C. Martin https://doi.org/10.1016/S0032-3861(98)00866-0
  9. Nanotechnology v.7 D. H. Reneker;I. Chun https://doi.org/10.1088/0957-4484/7/3/009
  10. Polymer Eng. & Sci. v.39 no.5 J. S. Kim;D. H. Reneker https://doi.org/10.1002/pen.11473
  11. U.S. Army Research Report, ARL-TR-2415 J. M. Deitzel;J. D. Kleinmeyer;J. K. Hirvonen;N. C. B. Tan
  12. Int. J. Mass Spec. & Ion Processes v.162 K. Tang;R. D. Smith https://doi.org/10.1016/S0168-1176(96)04514-4
  13. Application technology of Activated Carbon H. K. Tatemoto(et al.)
  14. Hwahak Konghak v.38 S. Y. Eom;T. H. Cho;J. H. Cho;S. K. Ryu
  15. Hwahak Konghak v.27 D. W. Lee;J. K. Lee;B. S. Rhee;S. K. Ruy
  16. 4th Int. Carbon Conference L. Djuricic;M. Polovina
  17. Carbon v.33 T. Li;X. Zheng https://doi.org/10.1016/0008-6223(94)00171-U
  18. Electrochemistry v.9 Y. O. Choi;K. S. Yang;J. H. Kim

Cited by

  1. Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method vol.43, pp.2, 2018, https://doi.org/10.1016/j.ijhydene.2017.11.028
  2. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution vol.41, pp.11, 2003, https://doi.org/10.1016/S0008-6223(03)00174-X