DOI QR코드

DOI QR Code

Fullerene으로 수식된 피롤고분자 피막전극

Pyrrole Polymer Film Electrode Modified with Fullerene

  • Cha, Seong-Keuck (Division of Chemistry & Chemical Engineering, Kyungnam University) ;
  • Ahn, Byung-Ki (Division of Chemistry & Chemical Engineering, Kyungnam University)
  • 발행 : 2002.02.01

초록

Fullerene으로 수식된 PPy(Polypyrrole)전극 즉, graphite(Gr)/ppy, fullerene $(full^-)$항을 Gr/5mM PPy, 1mM $full^-,0.1M\;TBABF_4,\; CH_3CN/Pt$형의 전지로 전기화학 중합법으로 제작하였다. $(full^-)$의 생성속도는 기질전극 재료인 Pt/ppy, Pt, Gr 및 Au전극에 대해 각각 93.6, $7.0\times10^2,\;42.6$$1.3\times10^2cms^{-1}$였다. 수식되지 않은 Gr/ppy와 수식된 $Gr/ppy, full^-$ 전극에 대한 어드미턴스 값이 $1.7\times10^{-3}S$에서 $8.3\times10^{-3}S$로 5배나 증가하였으며, 전기 이중층의 용량은 $2.4\times10^{-5}\;F$에서 $4.2\times10^{-5}\;F$로 174배 증가하였다.

The type of graphite(Gr)/ppy, fullerene$(full^-)$ electrode, ppy one modified with $(full^-)$, was prepared with the cell type of Gr/5mM ppy, 1mM $(full^-)$, 0.1M $TBABF_4$, CH3CN/Pt. The values of the ionic formation rate of the it at electrode materials such as Pt/ppy, Pt, Gr and Au were $93.6,\;7.0\times10^2,\;42.6\;and\;1.3\times10^2cms^{-1}$ respectively. The admittance values of the Grippy electrode and the modified Grippy, $(full^-)$ one were five times enhanced $1.7\times10^{-3}S\;to\;8.3\times10^{-3}\;S$ and capacitance values of electrical double layer of them were 174 times increased $2.4\times10^{-6}\;F\;to\;4.2\times10^{-5}\;F$ respectively.

키워드

참고문헌

  1. J. Phys. Chem. v.77 Lane, R. F.;Hubbard, A. T.
  2. Electroanalytical Chemistry v.13 Murray, R. W.
  3. J. Electroanal. Chem. v.100 Rocklin, R. D.;Murray, R. W. https://doi.org/10.1016/S0022-0728(79)80168-0
  4. J. Am. Chem. Soc. v.100 Miller, L. L.;van der Mark, M. R. https://doi.org/10.1021/ja00478a050
  5. Polymer v.25-1 Cha, S. K.
  6. Anal. Chem. v.62 Cha, S. K.;Abruna, H. D. https://doi.org/10.1021/ac00202a010
  7. J. Am. Chem. Soc. v.103 Abruna, H. D.;Bard, A. J.
  8. J. Am. Chem. Soc. v.100 Wrighton, M. S.;Austin, R. G.;Bocarsly, A. B.;Bolts, J. M.;Haas, O.;Legg, K. D.;Nadjo, L.;Palazzotto, M. C. https://doi.org/10.1021/ja00491a024
  9. J. Electrochem. Soc. v.130 Noufi, R. https://doi.org/10.1149/1.2119538
  10. Inorg. Chem. v.23 Dubois, D. L. https://doi.org/10.1021/ic00182a014
  11. J. Electroanal. Chem. v.157 Malpas, R. E.;Rushby, B.
  12. J. Electrochem. Soc. v.134 Osaka, T.;Naoi, K.;Sasaki;Ogano, S. https://doi.org/10.1149/1.2100447
  13. Polymer v.22-3 Cha, S. K.
  14. J. Chem. Soc;Chem. Comm. Diaz, A. F.;Kanazawa, K. K.
  15. J. Phys. Chem. Yang, R.;Henderickson, W. A. https://doi.org/10.1021/j100378a087
  16. J. Polymer. Soc. v.35 Cha, S. K. https://doi.org/10.1002/(SICI)1099-0488(19970115)35:1<165::AID-POLB14>3.0.CO;2-B
  17. J. Electrochem. Soc. v.134 Naoi, K.;Osaka, T. https://doi.org/10.1149/1.2100225
  18. J. Mat. Sci. v.28 Cha, S. K.;Chung, J. J.;Cha, C. K.;Abruna, H. D. https://doi.org/10.1007/BF00365031
  19. J. Electrochem. Soc. v.130 Tourillon, G.;Garnier, F.
  20. Phys. Rev. B. v.30-2 Chung, T. C.;Kaufman, J. H.;Heeger, A. J.;Wudl, F. https://doi.org/10.1103/PhysRevB.30.702
  21. Nature v.318 Kroto, H. W.;Heath, J. R.;O'Brien, S. C.;Curl, R. F.;Smally, R. E. https://doi.org/10.1038/318162a0
  22. Chem. Phys. Lett. v.96 Kratschmer, W.;Fostiropoulos, K.;Huffman, D. R.
  23. J. Am. Chem. Soc. v.115 Akasaka, T.;Ando, W. https://doi.org/10.1021/ja00057a072
  24. J. Am. Chem. Soc. v.114 Glarum, S. H.;Duclos, S.J.;Haddon, R. C. https://doi.org/10.1021/ja00032a010
  25. J. Am. Chem. Soc. v.116 Deronzier, A.;Muoutet, J. C. https://doi.org/10.1021/ja00090a070
  26. J. Am. Chem. Soc. v.114 Li, Q.;Wudl, F. https://doi.org/10.1021/ja00036a068
  27. J. Phys. Chem. v.96 Dubois, D.;Moninot, G.;Kutner, W.;Johes, M. T.;Kadish, K. M. https://doi.org/10.1021/j100196a056
  28. Physicochemical Hydrodynamics Levich, V. G.