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A Design of Multilayer Perceptron for Camera Calibration™

Yongtae Do’

Abstract

In this paper a new design of multi-layer perceptron(MLP) for camera calibration is proposed.
Most existing techniques determine a transformation from 3D spatial points to their image points and
camera parameters are tried to be estimated from the transformation. The technique proposed here, on
the other hand, determines rays of sight uniquely from image points and parameters are estimated
from the relationship using an MLP. By this approach projection and back-projection can be done
more straightforwardly. Being based on a geometric model, a network design process becomes less
ambiguous, which is a clear merit compared to other neural net based techniques. An MLP designed
according to the technique proposed showed fast and stable learning in tests under various conditions.

1. Introduction

Vision is the most important and useful sense
for both humans and machines. For successful
visual sensing, an accurate mapping between the
space viewed and corresponding image captured
is important. Humans and animals learn or
possess this mapping capability by nature. For
machines, however, when they use cameras for
visual perception, the intrinsic and extrinsic
parameters of cameras should be computed first
implicitly or explicitly to determine the mapping.
This process called camera calibration is thus a
key step for further processing in most 3D
machine vision applications.

Although the problems of stereo and motion
have been with the major research interests in
the field of 3D vision, Fauguerasm pointed out
that camera calibration is even more important
practically than these noble problems by two
like; (i) information obtainable by
calibration is a prerequisite for all
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algorithms, and (ii) calibration is basically the
same as estimating the motion of a camera.

Many techniques have been proposed to

calibrate cameras for the purpose of projection or

back-projection.  Existing camera calibration

techniques can be classified by different criteria.
For example, they can be grouped as linear or
nonlinear™™, implicit or explicitm
(4]

, and analytic or

iterative . Since every technique has its own

4,5
“3 ho one can be

advantages and disadvantages
the absolute best in different conditions and
applications.

Some researchers have tried to employ an
artificial neural network for camera calibration
based on its function approximation capability'®.
A major way of using neural networks is
correcting an existing(non-neural) technique to
reduce error. Wen and Schweitzerm, for example,
used a multi-layer perceptron(MLP) to identify
the part that could not be described by an
explicit camera model. Kume and Kanade®™ used
an MLP to convert ideal image coordinates to
real image coordinates for a camera. Choi and
Oh® used the same approach but divided the
image plane for higher accuracy and learning
efficiency employing another network. On the
other hand, Jun and Kim"” used an MLP for
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learning the whole projection mapping of a
camera rather than using it partly. Neural
networks were used also for back-projection. It
was shown that both whole back-projection and
the error of a linear technique could be learned
by an MLP". An MLP was applied for learning
the back-projection of a stereo pan-tilt camera
system”,

In spite of positive results like the above,
there are some disadvantages also that hinder its
practical applications. Hirst, it is rather ambiguous
to determine a proper structure of the network
used for calibration. Different numbers of hidden
layers and nodes should be tested for a given
data and it certainly is a very tedious work
requiring considerable time and energy consumption.
Second, when a camera calibrated is moved even
slightly, the whole calibration process should be
performed again for the same but moved camera.
Third, * the result of camera calibration for
projection can not be utilized for back-projection,
and vice versa. These problems are due mainly
to the fact that most neural networks employed
for calibration learn only the mapping between
3D world points and 2D image points implicitly.
Thus, the weights of nets’ synapses do not
contain any physical meaning.
Ahmed and his
presented an MLP structure by which a camera

Recently =

colleagues
can be calibrated explicitly. Since it was
designed based on a physical model, the
connection weights of the network were related
directly to the position, orientation and optical
parameters of the camera calibrated. Therefore,
no need for searching an optimal network
structure
employing neural

is required unlike other techniques
networks. Furthermore, the
orthonormality of the rotation matrix between
systems of world coordinate and camera
coordinate could be kept without additional steps
unlike existing analytical methods like [14].
However, the number of parameters to be learned

in the Ahmed’s network is always more than that

of data given for calibration. This is because
different scaling factors, that are required to map
3D points onto points on 2D plane, should be
leamed for different data. Although the constraint of
the orthomormality they applied in determining
rotation matrix might enable to reach an unique
solution, the learning was slow in our test.

In this paper, we propose a new design of
MLP for camera calibration. Like Ahmed’s, it is
designed based on a physical camera model and
all advantages of Ahmed’s approach can be
found here. In addition, unlike almost all existing
techniques including Ahmed’s, where calibration
was done to optimize the mapping from 3D
points to 2D image points, the technique
proposed in this paper learns the mapping from
2D image points to their rays of sight. Since this
is unique and an one-to-one mapping, the projection
and back-projection is very straightforward and easy
to be done.

In the next section we review the Ahmed’s
method briefly, which has some similarities to
our technique. The proposed method is then
described in Section 3 in detail and tested in

Section 4. Conclusions are given in Section 5.

2. An Explicit Camera
Calibration by MLP

Most existing camera calibration techniques
employ the pin-hole model due mainly to its
simplicity. This model assumes the existence of a
virtual point(pin-hole) through that all rays of
sight pass. A 3D point in the world coordinate

system {W}, _p"=(x,y,2)7, can then be
related to the corresponding image point,
i=(u,v)7, by the following equation

rul x

wi=PT z )

4 1
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‘f 0 4] 0
where P=i 0 —f vy, O ] is the
0 0 10
intrinsic parameter matrix,
7 712 713 dx
T= |72 "2 72 dy is the extrinsic

73 T Ty d;
0001

parameter matrix, ¥ is a scaling factor for a
point, f is the focal length, (u,, vO)T is the
center of the image  plane,
{d,,d,,d,} are the

rotation and displacement elements of the pose of

optical
{ 711, 712, 7, ¥31 and
a camera calibrated. Except 7, that is varying
dependent on " all other parameters are
constants if the camera calibrated is stationary.

Ahmed™ designed an MLP to learn the
projection mapping represented in eq.(1) by
minimizing the error function of the below with
N number of data given

E= g]{ (ri01— uz)2+ (700~ Ut)2+(7’t03t_ 1)2}(2)

where o0,,, m=1,++33, t=1,--;N, are the computed
outputs of the net. The network was designed to
learn the extrinsic parameter matrix T and the
intrinsic parameter matrix P with connections of
and  hidden-to-output
respectively by an error gradient descent learning

input-to-hidden layers
algorithm. When the scale factor y is included in

the learning scheme, the network can be
represented like figure 1.

The number of parameters to be determined is
not fixed and always more than that of training
data given because each datum has its own
scaling factor. Due to this reason, it is basically
impossible to get an unique solution while using
the orthornormality of the

minimizing the following error function can

rotational matrix

provide some constraints in parameter searching

Eo= il( Vot ot g — D)+ (ryry + rgr+ 137)

n=

2 2
+ (7179 rprst rigra) (v vg v+ )

&)

Figure 1. An MLP to learn the perspective
projection of a camera.

3. Design of an MLP to
Learn the Mapping
from an Image Point
to the Corresponding
Ray of Sight

Almost all existing calibration
techniques including that proposed by Ahmed
find camera parameters with the projection
transformation, that maps 3D points to the

corresponding 2D image points. As a many-to-

camera

one mapping, it requires the learning of an
additional parameter like y of eq.(2) and the
reserve mapping is impossible. We, in this paper,
propose a new technique that finds the mapping
from image points to their rays of sight rather
than 3D points. Although infinite number of 3D
points can be projected onto the same image
point, the ray of sight on which all 3D points
projected on the same image point lie is unique
point,
relationship between an image point and its

for an image Figure 2 shows the

corresponding ray of sight.
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ray of sight /

Figure 2. An image point and its ray of sight.

If we define a 3D frame {I} attached to the
image plane as shown in the figure, an arbitrary
image point can be represented as _p’= (2, ©,0) 7
in {I}. When using the pin-hole camera model, a
ray of sight from an image point can be
uniquely determined as it passes the focal point
7= (up, 09, AT in {1},
represented as  p/'=(p4, b, 0y )" in {W). The

which can also be

aiming vector of the ray can then be defined as

a'=pi—p! @
in {I}. This can be rewritten in {W} like
a"= Ry(pj—2') = Ryad’ &)
i 72 M3
where  Ryp= |79 79 #93| 1is a rotation
Y31 ¥32 733

matrix from {I} to {W}. As this ray should pass
a 3D point p"=(x,y,2)7 in {W}, that is
projected onto the image point, the final equation
defining a ray of sight from the #'th image point

#! becomes

pi'= '+ s Ru(pf— p1) ©)

where s, is a scale factor representing the ratio
between lengths of aiming vector and a vector to

p_tW from the pin-hole. This is not a constant

like 7y in eq.(4) but it needs not to be learned
or exact in calibration process unlike y as we
try to find a ray rather than a point from a
given image point. Actually it is just an arbitrary
constant in a line equation specifying a 3D point
on the line. The only condition we will imposed
on s during the network leaming is that it is a
positive constant minimizing the distance between
a 3D point and the ray from its image point.

Eq.(6) can be implemented by a neural
network in the structure shown in figure 3. The
outputs of the first and second hidden layers are
the aiming vectors in {I} and {W}, &' and &”,
respectively. The output of the total network is
the coordinate of a 3D point, that is on the ray
of sight from the image point given.

i /) fi ) Sy

N
Uy N/ X
Ty aW
Ug N3 yt Py
v I /" St /) y
t o t
awzl
e A N,
| %

N
/ N N
Ta3
1{
o/

Figure 3. An MLP to leamn a transformation from
an image point to its ray of sight.

The network can be trained by the error
back-propagation algorithm so that the error
function of the following equation is minimized
for N data given

Et: % ﬁ (Ont_PZ)z, t=1r'"’N (7)

n=1

where o0,, n=1I--,3, are the outputs of the

network for #'th data. Each parameters are
modified iteratively to reduce the error function
by
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oL
55 = 0w~ D 82)
E
; [ zst(omt—prvr[z/t)ngtl), m=1,++3, k=13
¥ omk
(8.b)
oFE
aw:’ =Strgl(0mt—p,%)rmh, h=1,"',3 (8C)
where H.Y is the k’th output of the first hidden

layer for t'th datum and 1w, = uy wy= vg,
wy = f. The scaling factor s, can be determined

for the point by

s= (o= 2B (a7} ©
where T means pseudo inversion.
Since eq.(8.b) does mnot guarantee the

orthornormality of the rotation matrix, we define
the error terms, FE and FE,, for the normality
and orthogonality respectively like the below

Ep= 217’%”}3—1, k=12 (10.2)
(10.b)

The first and second columns of the rotation

Eg=ryrptrarptrars

matrix then can be adjusted to reduce the error

terms like
S 3B v+ Eoria (1L2)
Ym
oE,
a"ﬁh' =2Euprwt Eorm (1Lb)
(87

where  E, ;= % (EY + EX, + E%). The third

column,  #3= (73 7 73;)7, then can be
determined from the two columns learned by
nB=nXr (12)

4. Results

The technique proposed was tested with
synthetic and real data. The synthetic points were
first generated
positions were within the radius of 500[mm)]

randomly in space, whose
from the center ray in approximately 1,000[mm]

front of the camera assumed. The pin hole

camera model was used then to computed
corresponding image points. One hundred points
were generated and half of them were used for
calibration while those remained were used for
testing the calibrated system. Zero mean random
Gaussian noise with the variance of 0.5 pixel
dimension was added onto the image coordinates
of data used, which brought about errors of
0.64[pixel] in average.

After 10,000 epochs of learning using an MLP
in the structure proposed, average errors of
0.49[pixel] and 0.67[pixel] were obtained for
calibration and test data respectively by

projection ervor=(1/N) gﬁu,— %)+ (v— 1,)°

(13)
where N is the number of points, ( %, v,) are
the estimated image coordinates by MLP for the
real coordinates (#,,v,) of a t’th point. The
errors resulted were quite small when comparing
to 3.00[pixel] and 41.99[pixel]

training the Ahmed’s network for the same
number of epochs. The real

obtained by

and estimated
parameters were like table 1 below. To reach
similar accuracy to that obtained by the MLP
proposed, the Ahmed’s network should be trained
for more than 10 times of iterations in our test
as shown in the table. The reason why testing
error was considerably larger than calibration
error when using Ahmed’s network might be due
to the fact that the number of parameters trained
was larger than the data used for training as
described previously. The leaming rates used for
both networks were experimentally set to the
maxima which did not cause unstability in
learning.

To check the sensitivity to the number of
training data, the network structure proposed was
trained with different number of data. Number of
training data used were 20,40,60,80, and 100.
After training with the data, the network was

tested with 50 data that were not used for

—243—



54

training. The noise level of the data simulated
was again zero mean and the variance of
0.5[pixel] to each dimension of the image point.
The result obtained after 5,000 learning epochs
was as shown in figure 4. We could get
approximately the best accuracy if somewhat
enough number of data were used as additional
data did not significantly increase the accuracy.

Similar result could be found

in traditional

calibration techniques as reported in [15].

Table 1. Example of network ieaming.

Estimated .
Estimated by
Real |by NN

Parameters proposed Ahmed’s network

values {10,000 10,000 100,000

epochs | epochs] epochs

dx [mm] |-200.00{ -197.54; -565.53; -159.15

dy [mm] | 500.00 498.47; 661.60; 481.56

d. Imm] |2000.00;{ 1998.80: 2075.20; 1990.60

rii 0.612 0.617 0.978 0.727
r1z 0.047 .0.052; -0.084 0.043 .

r3 0.789 0.785; -0.002 0.685

ra2) 0.612 0.609; -0.049 0.497

a2 -0.660 -0.663; -0.603; -0.658

ra3 -0.436 -0.436; -0.794; -0.553

31 0.500 0.497 0.065 0.427

32 0.750 0.748 0.768 0.742

ra3 -0.433 -0.441; -0.587; -0.500

wo [pixel]l | 258.00 265.24; 826.96; 410.94

vo [pixel] | 204.00 210.16 37.55¢ 168.30

f [mm] 25.00 24.93 14.54 22.34

Ayerage error [pixel]

e Training ercor
--- Testing eror |4

Figure 4. Effect of the number of training data to

0

40

50 60 70
#Training dala)

the calibration.

] 90

00

Yongtae Do

Figure 5 shows the result when different level
of noise was added to the data used. The error of
the proposed network was directly proportional to
the error of data. This could be expected as the
accuracy is limited by that of calibration data.

—— Training eror
-~~~ Testing error

Average errot [pixel}
o
4 -

o
o

o
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Variance of noise added on each dimension of image point [pixel}

Figure 5. Effect of noise level to the calibration.
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Figure 6. Error circles of projected points by

training the MLP proposed using real
data.

The MLP and its training algorithm proposed
were tested with real data also. Three planes
were placed at approximately 2,000[mm] in front
of a camera and points on the planes were
collected for calibration. Sixty points from the
near and far planes each were used for training
an MLP while ninety points from the center
plane were used for testing. The interval between
planes was about 242[mm]. We could obtain
subpixel accuracy after 22,000 epochs. Figure 6
shows the error circles of the neural projection
for the test points. The radius of a circle
represents the distance between the real and
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estimated image points. In the figure, the error
circles of outer image points are larger than
those of middle image points. This might be due
to the lens distortion.

5. Conclusion

A new design of MLP is proposed for
camera calibration. The proposed network finds

camera parameters explicitly unlike most neural .

network based calibration techniques. The explicit
calibration enables us to utilize the parameters
obtained from back-projection in the application
of projection or vice versa in a straightforward
Unlike Ahmed’s network, which has
some similarities to the network of this paper,

manner.

the proposed network has a constant number of

parameters and the leaming is fast and accurate
for moderate number of calibration data given as
being proven in tests under various conditions.
These advantages are mainly brought by relating
image points to their rays of sight, that is an
one-to-one mapping for each point while most
existing

techniques rtely on a many-to-one

projection mapping.
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