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MULTIPLE Lp FOURIER-FEYNMAN TRANSFORM ON

THE FRESNEL CLASS

J. M. Ahn

Abstract. In this paper, we introduce the concepts of multiple Lp

analytic Fourier-Feynman transform (1 ≤ p < ∞) and a convolution
product of functionals on abstract Wiener space and verify the ex-
istence of the multiple Lp analytic Fourier-Feynman transform for
functionls in the Fresnel class. Moreover, we verify that the Fresnel
class is closed under the Lp analytic Fourier-Feynman transforma-
tion and the convolution product, respectively. And we establish
some relationships among the multiple Lp analytic Fourier-Feynman
transform and the convolution product on the Fresnel class.

1. Introduction

In [2], Brue investigated initially the theory of an L1 analytic Fourier-
Feynman transform on a classical Wiener space, and in [3], Cameron
and Storvick introduced the concept of an L2 analytic Fourier-Feynman
transform on a classical Wiener space. In [10], Johnson and Skoug de-
veloped an Lp analytic Fourier-Feynman transform theory for 1 ≤ p ≤ 2
which extended the results in [2;3]. In [8;9], Huffman, Park and Skoug
developed an Lp analytic Fourier-Feynman transform theory on certain
classes of functionals defined on a classical Wiener space and they defined
a convolution product of two functionals on the classical Wiener space
and then found several interesting properties for the Fourier-Feynman
transform and the convolution product on a classical Wiener space. In
[1], the author investigated the L1 analytic Fourier-Feynman transform
theory on the Fresnel class of an abstract Wiener space.
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This paper is organized as follows. In Section 2, we introduce the
basic concepts and the notations for our research. In Section 3, we
investigate the essential properties for the multiple Lp analytic Fourier-
Feynman transform and the convolution product on the Fresnel class
of an abstract Wiener space. Finally, we establish some relationships
among the Lp Fourier-Feynman transform and the convolution product
on the Fresnel class.

2. Definitions and Preliminaries

Let H be a real separable infinite dimensional Hilbert space with
norm | · | =

√
〈·, ·〉, where 〈·, ·〉 is an inner product on H. Let ‖ · ‖o

be a fixed measurable norm on H ( for definition see [13] ). Let B be
the completion of H with respect to the measurable norm ‖ · ‖o and
µt( t > 0 ) the Gauss measure on H with variance t. Then µt induces
a cylinder set measure µ̃t on B which in turn extends to a countably
additive measure ωt on (B,B(B)), where B(B) is the Borel σ-algebra of
B. Then ωt is called the Wiener measure with variance t and it has the
following properties:

(2.1)

{
ωst(E) = ωt(s

−1/2E), s > 0,
ωt(−E) = ωt(E).

From now on, we shall use ω instead of ω1, by identifying ω with ω1.
Let {en} denote a complete orthonormal set of H such that en’s are

in B∗, the topological dual space of B. For each h ∈ H and x ∈ B, we
define a stochastic inner product (·, ·)∼ between H and B as follows :

(2.2) (h, x)∼ =





lim
n→∞

n∑
k=1

〈h, ek〉(ek, x) , if the limit exists

0 , otherwise,

where (·, ·) is the natural dual pairing between B∗ and B.
It is well known [11,12] that for every h ∈ H, (h, x)∼ exists for ωt-

a.e. x ∈ B, and (h, ·)∼ is a Borel measurable functional on B having a
Gaussian distribution with mean zero and variance t|h|2 with respect to
ωt. Furthermore, it is obvious that for each real number α, (αh, x)∼ =
α(h, x)∼ = (h, αx)∼ holds for every h ∈ H and x ∈ B. And we can show
that (h, x)∼ = 〈h, x〉, whenever h and x are elements of H.

Let (B, H, ωt) be an abstract Wiener space. For each λ > 0, let
Sλ(B) be the completion of B(B) with respect to ωλ, and let Nλ(B) =
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{A ∈ Sλ(B) : ωλ(A) = 0}. Let S(B) =
⋂

λ>0 Sλ(B), and N (B) =⋂
λ>0Nλ(B). Every set in S(B) ( or N (B) ) is called a scale-invariant

measurable ( or scale-invariant null ) set. A real ( or complex )-valued
functional F on B is called scale-invariant measurable if F is measurable
with respect to S(B). A property that holds except on a scale- invariant
null set is said to hold scale-invariant almost everywhere (briefly, s-a.e.).
If two functionals F and G are equal s-a.e., then we write F ≈ G. It is
easy to show that this relation ≈ is an equivalence relation on the class
of functionals on B. For a functional F on B, we will denote by [F ] the
equivalence class of functionals which are equal to F s-a.e..

Definition 2.1. Let (B,H, ω) be an abstract Wiener space and
M(H) the space of all complex-valued countably additive Borel mea-
sures on H. Consider the functional F defined for s-a.e. x ∈ B by the
formula

(2.3) F (x) =

∫

H

exp{i(h, x)∼} df(h),

where f is in M(H). Let F(B) denote the collection of equivalence
classes [F ] of functionals which are equal to F s-a.e. on B. Then we say
that F(B) is the Fresnel class on the abstract Wiener space (B, H, ω).

Remark 2.2. (1) As is customary, we will identify a functional with
its equivalence class and think of F(B) as a class of functionals on B
rather than as a class of equivalence classes.

(2) M(H) is a Banach algebra over the complex fields under the total
variation norm ‖ ·‖, where the convolution is taken as the multiplication
( see [7] ). There exists an isomorphism of Banach algebras between
M(H) and F(B) ( see [11; Proposition 2.1]. ).

Throughout this paper, let R and C denote the real numbers and the
complex numbers, respectively, and put C+ = {z ∈ C : Re(z) > 0} and

C̃+ = {z ∈ C : z 6= 0, Re(z) ≥ 0}, where Re(z) means the real part of
the complex number z.

Let F be a complex-valued scale-invariant measurable functional on
the abstract Wiener space (B,H, ω) such that the Wiener integral

J(F ; λ) =

∫

B

F (λ−1/2x) dω(x)

exists as a finite number for all λ > 0. If there exists an analytic function
J∗(F ; z) of z in the half-plane C+ such that J∗(F ; λ) = J(F ; λ) for all
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λ > 0, then we define this analytic extension J∗(F ; z) of J(F ; λ) to be
the analytic Wiener integral of F over B with parameter z and we write∫ anwz

B

F (x) dω(x) ≡ Ianw(F ; z) = J∗(F ; z)

for all z ∈ C+.
Let q be a non-zero real number and F a functional on B such that

the analytic Wiener integral Ianw(F ; z) exists for all z ∈ C+. If the
following limit exists, then we call it the analytic Feynman integral of F
over B with parameter q and we write

∫ anfq

B

F (x) dω(x) ≡ Ianf (F ; q) = lim
z→−iq

Ianw(F ; z),

where z approaches −iq through C+.

Definition 2.3. Let 1 < p < ∞ and let {Fn} and F be scale-
invariant measurable functionals on the abstract Wiener space (B, H, ω)
such that for each ρ > 0,

(2.4) lim
n→∞

∫

B

|Fn(ρx)− F (ρx)|p′ dω(x) = 0.

Then we write

(2.5) l. i. m.
n→∞

(wp′
s )(Fn) ≈ F,

and we call F the scale-invariant limit in the mean of order p′, where p
and p′ are related by 1/p + 1/p′ = 1.

A similar definition is understood when n is replaced by the continu-
ously varying parameter z.

Now we are ready to define an Lp analytic Fourier-Feynman transform
(1 ≤ p < ∞) on abstract Wiener space.

Definition 2.4. For each z ∈ C+, we define a transform Fz(F ) of a
functional F on the abstract Wiener space (B, H, ω) as follows:

(2.6)
(Fz(F )

)
(y) = Ianw(F (·+ y); z) , y ∈ B.

Let q be a non-zero real number. In case that 1 < p < ∞, we define
the Lp analytic Fourier-Feynman transform F(q;p)(F ) for a functional F
on (B,H, ω) by

(2.7) (F(q;p)(F ))(y) = l. i. m.
z→−iq

(wp′
s )(Fz(F ))(y)
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for s-a.e. y ∈ B, whenever this limit exists, where z approaches −iq
through C+.

Let q be a non-zero real number. In case that p = 1, we define the
L1 analytic Fourier-Feynman transform F(q;1)(F ) of F by

(2.8) (F(q;1)(F ))(y) = lim
z→−iq

(Fz(F ))(y),

for s-a.e. y ∈ B, where z approaches −iq through C+.
We note that for 1 ≤ p < ∞, F(q;p)(F ) is defined only s-a.e.. We

also note that if F(q;p)(F ) exists and if F ≈ G, then F(q;p)(G) exists and
F(q;p)(F ) ≈ F(q;p)(G).

We finish this section by giving the definition of the convolution prod-
uct of two functionals on the abstract Wiener space (B, H, ω).

Definition 2.5. Let F and G be two complex-valued functionals on

the abstract Wiener space (B, H, ω). For each z ∈ C̃+ , we define their
convolution product (F ∗G)z as follows :

In case that z belongs to C+,

(2.9) (F ∗G)z(y) = Ianw
[
F

( 1√
2
(y + ·)

)
G

( 1√
2
(y − ·)

)
; z

]

for y ∈ B, if it exists.
In case that z = −iq ( q ∈ R− {0} ),

(2.10) (F ∗G)q(y) = Ianf
[
F

( 1√
2
(y + ·)

)
G

( 1√
2
(y − ·)

)
; q

]

for y ∈ B, if it exists.

3. Multiple Lp Analytic Fourier-Feynman Transform and Con-
volution

We begin this section by showing the existence of the Lp analytic
Fourier-Feynman transform for every functional in the Fresnel class F(B).

Theorem 3.1. Let F ∈ F(B) be given by (2.3) and let 1 ≤ p < ∞.
Then the transform Fz(F ) exists for all z ∈ C+, it belongs to F(B), and
the following formula

(3.1)
(Fz(F )

)
(y) =

∫

H

exp
{
− 1

2z
|h |2 + i(h, y)∼

}
df(h)

holds for s-a.e. y ∈ B, where f is in M(H).
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Moreover, the Lp analytic Fourier-Feynman transform F(q;p)(F ) exists
for all q ∈ R− {0}, it belongs to F(B) , and the following formula

(3.2)
(F(q;p)(F )

)
(y) =

∫

H

exp
{
− i

2q
|h |2 + i(h, y)∼

}
df(h)

holds for s-a.e. y ∈ B, where f is in M(H).

Proof. First of all, we shall calculate the transform Ft(F ) for t > 0.
By using Fubini’s Theorem and the following integral formula :

(3.3)

∫

B

exp{i t (h, x)∼} dω(x) = exp
{
−t2

2
|h |2

}
, h ∈ H, t ∈ R,

we have, for each t > 0 ,

(3.4)

(Ft(F )
)
(y) =

∫
B

∫
H

exp
{
i
(
h, x√

t
+ y

)∼}
df(h) dω(x)

=
∫

H
exp

{− 1
2t
|h |2 + i(h, y)∼

}
df(h)

for s-a.e. y ∈ B.
By using Morera’s Theorem, we can verify that the last expression

of (3.4) is an analytic function of t throughout C+, and is a bounded

continuous function of t throughout C̃+ for all y ∈ B, because f is in
M(H). Therefore the transform Fz(F ) exists for all z ∈ C+ , and finally
we can show that (3.1) and (3.2) hold.

Finally we shall show that Fz(F ) belongs to F(B) for every z ∈ C+.
Let z be in C+ and define a set function η : B(H) −→ C as follows :

η(E) =

∫

E

exp
{− 1

2z
|h |2} df(h), E ∈ B(H),

where B(H) is the Borel σ-algebra of H. Then it is obvious that η
belongs to the Banach algebra M(H). Moreover, (3.1) is expressed as
follows :

(Fz(F ))(y) =

∫

H

exp
{
i(h, y)∼

}
dη(h).

Hence Fz(F ) belongs to F(B).
Similarly, we can show that F(q;p)(F ) belongs to F(B).

Remark 3.2. Note that taking y = 0 in (3.2), we can obtain the

analytic Feynman integral
∫ anfq

B
F (x) dω(x) for every element F ∈ F(B)

given by (2.3) as follows :
∫ anfq

B

F (x) dω(x) = F(q;p)(F )(0) =

∫

H

exp
{
− i

2q
|h |2

}
df(h).
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This coincides with the result given in [11 ; Proposition 2.2 ].

Definition 3.3. Let F be a functional defined on the abstract Wiener
space (B,H, ω) and define a transform F (n)

t (F )(t > 0) of F as follows :

F (n)
t (F ) =

(Ft ◦ · · · ◦ Ft︸ ︷︷ ︸
n

)
(F ),

that is, F (n)
t means the n-times composition of Ft, where Ft is equal to

Fz for z > 0 in (2.6) of Definition 2.4, and n is a natural number.

Let F (n)
z (F ) be an analytic extension of F (n)

t (F ) as a function of
z ∈ C+. In case that 1 < p < ∞, for each q ∈ R − {0}, we define the

multiple Lp analytic Fourier-Feynman transform F (n)
(q;p)(F ) of F by

(3.5) F (n)
(q;p)(F ) = l. i. m.

z→−iq
(wp′

s )(F (n)
z (F )),

where z approaches −iq through C+.
In case that p = 1 , for each q ∈ R − {0}, we define the multiple L1

analytic Fourier-Feynman transform F (n)
(q;1)(F ) of F by

(3.6) F (n)
(q;1)(F ) = lim

z→−iq
(F (n)

z (F )),

where z approaches −iq through C+.

Note that F (0)
z (F ) ≡ F ≡ F (0)

(q;p)(F ), F (1)
z (F ) ≡ Fz(F ), and F (1)

(q;p)(F )

≡ F(q;p)(F ).

By using the mathematical induction and proceeding as in the proof
of Theorem 3.1, we can obtain the following theorem.

Theorem 3.4. Let F ∈ F(B) be given by (2.3) and let 1 ≤ p < ∞.

Then the transform F (n)
z (F ) exists for all z ∈ C+, it belongs to F(B),

and the following formula

(3.7)
(F (n)

z (F )
)
(y) =

∫

H

exp
{
− n

2z
|h |2 + i(h, y)∼

}
df(h)

holds for s-a.e. y ∈ B, where f is in M(H) and n = 0, 1, 2, · · · .
Moreover, for each q ∈ R − {0}, the multiple Lp analytic Fourier-

Feynman transform F (n)
(q;p)(F ) exists, it belongs to F(B), and the follow-

ing formula

(3.8)
(F (n)

(q;p)(F )
)
(y) =

∫

H

exp
{
−i n

2q
|h |2 + i(h, y)∼

}
df(h)
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holds for s-a.e. y ∈ B, where f is in M(H) and n = 0, 1, 2, · · · .
Note that (3.7) and (3.8) are reduced to (3.1) and (3.2), respectively,

if we take n = 1 in (3.7) and (3.8).

Theorem 3.5. Let F and G be in F(B) which are given by (2.3).

Then the convolution product
(
(F (n)

z F ) ∗ (F (m)
z G)

)
z

exists for each z ∈
C+, it belongs to F(B), and the following formula
(3.9)(

(F (n)
z F ) ∗ (F (m)

z G)
)

z
(y)

=
∫

H2 exp
{− n

2z
|u |2 − m

2z
| v |2 − 1

4z
|u− v |2 + i√

2
(u + v, y)∼

}
df(u) dg(v)

holds for s-a.e. y ∈ B, where f and g are in M(H) and m,n =
0, 1, 2, · · · .

Furthermore, the convolution product
(
(F (n)

(q;p)F ) ∗ (F (m)
(q;p)G)

)
q

exists

for every q ∈ R− {0}, it belongs to F(B), and it is given by
(3.10)(

(F (n)
(q;p)F ) ∗ (F (m)

(q;p)G)
)

q
(y)

=
∫

H2 exp
{− i n

2q
| u |2 − i m

2q
| v |2 − i

4q
|u− v |2 + i√

2
(u + v, y)∼

}
df(u) dg(v) ,

for s-a.e. y ∈ B, where f and g are in M(H) and m,n = 0, 1, 2, · · · .

Proof. By using Fubini’s Theorem, Definition 2.5, (3.3), and (3.7), we

first calculate
(
(F (n)

t F ) ∗ (F (m)
t G)

)
t
for every t > 0 as follows :

(
(F (n)

t F ) ∗ (F (m)
t G)

)
t
(y)

=
∫

B

(F (n)
t F

)(
1√
2

(
y + x√

t

))(F (m)
t G

)(
1√
2

(
y − x√

t

))
dω(x)

=
∫

H2 exp
{− n

2t
| u |2 − m

2t
| v |2 + i√

2
(u + v, y)∼

}

·[∫
B

exp
{

i√
2t

(u− v, x)∼
}

dω(x)
]
df(u) dg(v)

=
∫

H2 exp
{− n

2t
| u |2 − m

2t
| v |2 + i√

2
(u + v, y)∼ − 1

4t
|u− v |2} df(u) dg(v).

By using Morera’s Theorem, we can verify that the last expression is
an analytic function of t throughout C+, and is a bounded continuous

function of t over C̃+ for all y in B, because f and g are in M(H).
Therefore, we can show that (3.9) and (3.10) hold.

Next we shall show that
(
(F (n)

z F ) ∗ (F (m)
z G)

)
z

belongs to F(B) for

every z ∈ C+. Let z be in C+ and define a set function ν : B(H2) → C
by

ν(E) =

∫

E

exp
{
− n

2z
|u |2−m

2z
| v |2− 1

4z
|u−v |2

}
df(u) dg(v), E ∈ B(H2).
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Then it is obvious that ν is a complex-valued countably additive Borel
measure on B(H2).

Now define a function ϕ : H2 → H as follows :

ϕ(u, v) =
1√
2
(u + v), (u, v) ∈ H2.

Then ϕ is continuous , and so it is a Borel measurable function. Hence
µ = ν ·ϕ−1 belongs to the Banach algebra M(H). By using the Change
of Variable Formula, we have

(
(F (n)

z F ) ∗ (F (m)
z G)

)
z
(y) =

∫

H

exp
{
i(w, y)∼

}
dµ(w).

Hence
(
(F (n)

z F ) ∗ (F (m)
z G)

)
z

belongs to F(B).

Similarly, we can show that
(
(F (n)

(q;p)F ) ∗ (F (m)
(q;p)G)

)
q

belongs to F(B).

Note that taking m = n = 0 in (3.10), we obtain the convolution
product

(
F ∗ G

)
q
(y) for two functions F and G in the Fresnel class

F(B) as follows :(
F ∗G

)
q
(y)

=
∫

H2 exp
{− i

4q
|u− v |2 + i√

2
(u + v, y)∼

}
df(u) dg(v) .

This coincides with the formula (3.7) given in [ 1 ; Theorem 3.2 ].
Note that taking m = n = 1 in (3.10), we obtain the convolution

product
(
(F(q;p)F ) ∗ (F(q;p)G)

)
q
(y) for two Fourier-Feynman transforms

F(q;p)F and F(q;p)G as follows :
(
(F(q;p)F ) ∗ (F(q;p)G)

)
q
(y)

=
∫

H2 exp
{− i

4q
(2 |u |2 + 2 | v |2 + | u − v |2) + i√

2
(u + v, y)∼

}
df(u) dg(v) .

Our next theorem shows that the Lp analytic Fourier-Feynman trans-
form of the convolution product for two functionals in the Fresnel class
F(B) is a product of Fourier-Feynman transforms for each functional.

Theorem 3.6. Let F and G be as in Theorem 3.5 and let 1 ≤ p < ∞.

Then the transform Fz

(
(F (n)

z F ) ∗ (F (m)
z G)

)
z

exists for all z ∈ C+, and
the following formula
(3.11)(Fz((F (n)

z F ) ∗ (F (m)
z G))z

)
(y) =

(F (n+1)
z F

)(
y√
2

) (F (m+1)
z G

)(
y√
2

)

=
∫

H2 exp
{− (n+1)

2z
|u |2 − (m+1)

2z
| v |2 + i√

2
(u + v, y)∼

}
df(u) dg(v)
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holds for s-a.e. y ∈ B, where m, n = 0, 1, 2, · · · .
Furthermore, for each q ∈ R− {0}, the Lp analytic Fourier-Feynman

transform F(q;p)

(
(F (n)

(q;p)F ) ∗ (F (m)
(q;p)G)

)
q

is given by

(3.12)(F(q;p)((F (n)
(q;p)F ) ∗ (F (m)

(q;p)G))q

)
(y) =

(F (n+1)
(q;p) F

)(
y√
2

)(F (m+1)
(q;p) G

)(
y√
2

)

=
∫

H2 exp
{− i (n+1)

2q
|u |2 − i (m+1)

2q
| v |2 + i√

2
(u + v, y)∼

}
df(u) dg(v)

where m, n = 0, 1, 2, . . . .

Proof. By using Fubini’s Theorem, (3.3) and (3.9), we first calculate

the transform Ft

(
(F (n)

t F ) ∗ (F (m)
t G)

)
t
for all t > 0 as follows:

(3.13)(Ft((F (n)
t F ) ∗ (F (m)

t G))t

)
(y)

=
∫

B

(
(F (n)

t F ) ∗ (F (m)
t G)

)
t

(
x√
t
+ y

)
dω(x)

=
∫

H2 exp
{− n

2t
|u |2 − m

2t
| v |2 − 1

4t
|u− v |2 + i√

2
(u + v, y)∼

}

·[∫
B

exp
{

i√
2t

(u + v, x)∼
}

dω(x)
]
df(u) dg(v)

=
∫

H2 exp
{− (n+1)

2t
|u |2 − (m+1)

2t
| v |2 + i√

2
(u + v, y)∼

}
df(u)dg(v).

By using Morera’s Theorem, we can verify that the last expression
in (3.13) is an analytic function of t throughout C+, and is a bounded

continuous function of t over C̃+ for all y ∈ B, because f and g are in
M(H). Therefore, for each z ∈ C+, the following formula
(3.14)(Fz((F (n)

z F ) ∗ (F (m)
z G))z

)
(y)

=
∫

H2 exp
{− (n+1)

2z
|u |2 − (m+1)

2z
| v |2 + i√

2
(u + v, y)∼

}
df(u) dg(v)

holds for s-a.e. y ∈ B.

On the other hand, using (3.7), we can show that for every z ∈ C+,
the following formula
(3.15)(F (n+1)

z F
)(

y√
2

)(F (m+1)
z G

)(
y√
2

)

=
∫

H2 exp
{− (n+1)

2z
| u |2 − (m+1)

2z
| v |2 + i√

2
(u + v, y)∼

}
df(u)dg(v)

holds for s-a.e. y ∈ B.

Therefore, (3.11) follows from (3.14) and (3.15), and finally (3.12)
comes from (3.11) with the help of Definition 2.3.
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Note that taking m = n = 0 in (3.12), we obtain(F(q;p)(F ∗G)q

)
(y) =

(F(q;p)F
)(

y√
2

) (F(q;p)G
)(

y√
2

)

=
∫

H2 exp
{− i

2q
(|u |2 + | v |2) + i√

2
(u + v, y)∼

}
df(u)dg(v) ,

which is similar to the result given in [ 1 ; Theorem 3.3 ].

Remark 3.7. Let F and G be as in Theorem 3.5 and let 1 ≤ p < ∞.
By applying the formula (3.8) in Theorem 3.4 for the formula (3.10) in
Theorem 3.5, we can show that a multiple Lp analytic Fourier-Feynman

transform F (k)
(q;p)

(
(F (n)

(q;p)F ) ∗ (F (m)
(q;p)G)

)
q

exists for each q ∈ R− {0}, and

it is given by

(3.16)
(F (k)

(q;p)((F (n)
(q;p)F ) ∗ (F (m)

(q;p)G))q

)
(y) =

∫

H2

exp

{
−i (n + 1)

2q
|u |2

−i (m + 1)

2q
| v |2 − i (k − 1)

4q
|u + v |2 +

i√
2
(u + v, y)∼

}
· df(u) dg(v)

where k, m, n = 0, 1, 2, . . . . But by using the formula (3.8) in Theorem

3.4, we can show that the product
(F (k+n)

(q;p) F
)(

y√
2

)(F (k+m)
(q;p) G

)(
y√
2

)
is

given by
(3.17)(F (k+n)

(q;p) F
)(

y√
2

)(F (k+m)
(q;p) G

)(
y√
2

)

=
∫

H2 exp
{− i (k+n)

2q
|u |2 − i (k+m)

2q
| v |2 + i√

2
(u + v, y)∼

}
df(u)dg(v)

for s-a.e. y ∈ B, where k, m, n, = 0, 1, 2, · · · . If we take k = 1 in
both (3.16) and (3.17), we obtain the formula (3.12) given in Theorem
3.6. Note that(F (k)

(q;p)((F (n)
(q;p)F ) ∗ (F (m)

(q;p)G))q

)
(y) 6= (F (k+n)

(q;p) F
)( y√

2

)(F (k+m)
(q;p) G

)( y√
2

)

for s-a.e. y ∈ B, whenever k is a nonnegative integer with k 6= 1.

Our next theorem shows that an interesting Parseval’s identity holds
on the Fresnel class F(B).

Theorem 3.8. Let F and G be as in Theorem 3.5 and let 1 ≤ p < ∞.
Then for each q ∈ R− {0}, the following Parseval’s identity holds :

(3.18)

F(−q;p)

(F(q;p)((F (n)
(q;p)F ) ∗ (F (m)

(q;p)G))q

)
(0)

= F(q;p)

((F (n)
(q;p)F

)( ·√
2

)(F (m)
(q;p)G

)(− ·√
2

))
(0)

=
∫

H2 exp
{− i n

2q
|u |2 − i m

2q
| v |2 − i

4q
| u− v |2} df(u) dg(v)
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where m, n = 0, 1, 2, · · · .

Proof. We first calculate the transform Ft

(F(q;p)((F (n)
(q;p)F )∗(F (m)

(q;p)G))q

)
for all t > 0, where q is a non-zero real number. Using Fubini’s Theorem,
(3.3), (3.8), and (3.12), we have, for all t > 0,

Ft

(F(q;p)((F (n)
(q;p)F ) ∗ (F (m)

(q;p)G))q

)
(0)

= Ft

((F (n+1)
(q;p) F

)( ·√
2

)(F (m+1)
(q;p) G

)( ·√
2

))
(0)

=
∫

B

(F (n+1)
(q;p) F

)(
x√
2t

)(F (m+1)
(q;p) G

)(
x√
2t

)
dω(x)

=
∫

H2 exp
{− i(n+1)

2q
| u |2 − i(m+1)

2q
| v |2)}[∫

B
exp

{
i√
2t

(u + v, x)∼
}

dω(x)
]

·df(u) dg(v)

=
∫

H2 exp
{− i(n+1)

2q
| u |2 − i(m+1)

2q
| v |2 − 1

4t
|u + v |2} df(u) dg(v).

Since the last expression has an analytic extension for t over C+, and

is a bounded continuous function of t over C̃+, we can show that the
following formula

(3.19)

F(−q;p)

(F(q;p)((F (n)
(q;p)F ) ∗ (F (m)

(q;p)G))q

)
(0)

= l. i. m
t→ iq

(wp′
s )Ft

(F(q;p)((F (n)
(q;p)F ) ∗ (F (m)

(q;p)G))q

)
(0)

=
∫

H2 exp
{− i n

2q
|u |2 − i m

2q
| v |2 − i

4q
| u− v |2} df(u) dg(v)

holds.
Next we calculate the transform Ft

(
(F (n)

(q;p)F )( ·√
2
)(F (m)

(q;p)G)(− ·√
2
)
)
(0)

for all t > 0. Using (3.3) and Fubini’s Theorem, we obtain the following
formula

Ft

((F (n)
(q;p)F

)( ·√
2

) (F (m)
(q;p)G

)(− ·√
2

))
(0)

=
∫

B

(F (n)
(q;p)F

)(
x√
2t

) (F (m)
(q;p)G

)(− x√
2t

)
dω(x)

=
∫

H2 exp
{− i n

2q
| u |2 − i m

2q
| v |2}[∫

B
exp

{
i√
2t

(u− v, x)∼
}
dω(x)

]
df(u) dg(v)

=
∫

H2 exp
{− i n

2q
| u |2 − i m

2q
| v |2 − 1

4t
|u− v |2} df(u) dg(v).

Since the last expression has an analytic extension for t over C+, and

is a bounded continuous function of t throughout C̃+, we can show that
the following formula

(3.20)

F(q;p)

((F (n)
(q;p)F

)( ·√
2

) (F (m)
(q;p)G

)(− ·√
2

))
(0)

= l. i. m
t→−iq

(wp′
s )Ft

((F (n)
(q;p)F

)( ·√
2

) (F (m)
(q;p)G

)(− ·√
2

))
(0)

=
∫

H2 exp
{− i n

2q
|u |2 − i m

2q
| v |2 − i

4q
| u− v |2} df(u) dg(v)

holds.
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Therefore, (3.18) comes from (3.19) and (3.20).

Note that taking m = n = 0 in (3.18), we obtain

F(−q;p)

{(F(q;p)(F ∗G)q

)}
(0) = F(q;p)

(
F

( ·√
2

)
G

(− ·√
2

))
(0)

=
∫

H2 exp
{− i

4q
|u− v |2} df(u) dg(v) ,

which is similar to the result given in [1; Theorem 3.4 ].

Theorem 3.9. Let F and G be as in Theorem 3.5 and let 1 ≤ p < ∞.
Then for each non-zero real number q, the following formula
(3.21)((F (n)

(q;p)F
) ∗ (F (m)

(q;p)G
))

−q
(y) = F(q;p)

((F (n−1)
(q;p) F

)( ·√
2

)(F (m−1)
(q;p) G

)( ·√
2

))
(y)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i n

2q
|u |2 − i m

2q
| v |2 + i

4q
|u− v |2} df(u)dg(v).

holds for s-a.e. y ∈ B, where m,n = 1, 2, 3, · · · .
Proof. Let q be any non-zero real number. Using (3.3), (3.8) and Fu-

bini’s Theorem, for each t > 0 we first calculate the expression
((F (n)

(q;p)F
)∗(F (m)

(q;p)G
))

t
(y) for each y ∈ B as follows

(3.22)((F (n)
(q;p)F

) ∗ (F (m)
(q;p)G

))
t
(y)

=
∫

B

(F (n)
(q;p)F

)(
1√
2

(
y + x√

t

)) (F (m)
(q;p)G

)(
1√
2

(
y − x√

t

))
dω(x)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i n

2q
|u |2 − i m

2q
| v |2}

·[∫
B

exp
{

i√
2t

(u− v, x)∼
}

dω(x)
]
df(u) dg(v)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i n

2q
|u |2 − i m

2q
| v |2 − 1

4t
|u− v |2} df(u) dg(v).

By using Morera’s Theorem, we can verify that the last expression
in (3.22) is an analytic function of t throughout C+, and is a bounded

continuous function of t throughout C̃+. Therefore, for each non-zero
real number q, we have the following formula
(3.23)((F (n)

(q;p)F
) ∗ (F (m)

(q;p)G
))
−q

(y)

= lim
t→ iq

((F (n)
(q;p)F

) ∗ (F (m)
(q;p)G

))
t
(y)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i n

2q
|u |2 − i m

2q
| v |2 + i

4q
|u− v |2} df(u)dg(v).

for s-a.e y ∈ B.
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Next, for each t > 0, we obtain the following formula
(3.24)

Ft

((F (n−1)
(q;p) F

)( ·√
2

)(F (m−1)
(q;p) G

)( ·√
2

))
(y)

=
∫

B

(F (n−1)
(q;p) F

)(
1√
2

(
x√
t
+ y

))(F (m−1)
(q;p) G

)(
1√
2

(
x√
t
+ y

))
dω(x)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i(n−1)

2q
|u |2 − i(m−1)

2q
| v |2}

·[∫
B

exp
{

i√
2t

(u + v, x)∼
}

dω(x)
]
df(u)dg(v)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i(n−1)

2q
|u |2 − i(m−1)

2q
| v |2 − 1

4t
| u + v |2}

·df(u) dg(v)

for s-a.e. y ∈ B.
By using Morera’s Theorem, we can verify that the last expression

in (3.24) is an analytic function of t throughout C+, and is a bounded

continuous function of t throughout C̃+. Therefore, for each non-zero
real number, we have the following formula
(3.25)

F(q;p)

((F (n−1)
(q;p) F

)( ·√
2

)(F (m−1)
(q;p) G

)( ·√
2

))
(y)

= l. i. m
t→−iq

(wp′
s )Ft

((F (n−1)
(q;p) F

)( ·√
2

)(F (m−1)
(q;p) G)

( ·√
2

))
(y)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i n

2q
|u |2 − i m

2q
| v |2 + i

4q
|u− v |2} df(u)dg(v)

for s-a.e. y ∈ B.
Therefore, (3.21) comes from (3.23) and (3.25).

Note that taking m = n = 1 in (3.21), we obtain(
F(q;p)(F ) ∗ F(q;p)(G)

)
−q

(y) = F(q;p)

(
F

( ·√
2

)
G

( ·√
2

))
(y)

=
∫

H2 exp
{

i√
2
(u + v, y)∼ − i

4q
|u + v |2} df(u)dg(v) ,

which is similar to the result given in [ 1; Theorem 3.6 ].
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