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Dynamic Electrical Impedance Tomography with Internal

Electrodes
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Abstract

Electrical impedance tomography(EIT) is a relatively new imaging modality in which the internal impedivity
distribution is reconstructed based on the known sets of injected currents and measured voltages on the surface of the
object. We describe a dynamic EIT imaging technique for the case where the resistivity distribution inside the object
changes rapidly within the time taken to acquire a full set of independent measurement data. In doing so, the inverse
problem is treated as the state estimation problem and the unknown state (resistivity) is estimated with the 'aid of
extended Kalman filter in a minimum mean square error sense. In particular, additional electrodes are attached to the
known internal structure of the object to enhance the reconstruction performance and modified Tikhonov regularization
technique is employed to mitigate the ill-posedness of the inverse problem. Computer simulations are provided to

illustrate the reconstruction performance of the proposed algorithm.
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|. Introduction Over the past few decades, Electrical Tomography
(ET) techniques have received much attention from both

theoretical and experimental points of view since they

can be used as an alternative imaging modality for

*PNAREME ERLT LA

(Department of Electrical & Electronic Engineering,

monitoring tool in many fields of engineering. This is

mainly due to the relatively cheap electronic hardware
Cheju National University)

_ requirements, noninvasive measurement sensing, and
X% H: 20014 8A 1R, fEIESET A: 2001115 10H

relatively good temporal resolution [1-7].
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If the electromagnetic properties of different materials
inside the object differs from each other the spatial
and/or temporal distributions of the material properties
can be estimated based on the various ET techniques.
In general, the ET techniques can be classified into

three categories according to the electromagnetic

quantities to be imaged; These quantities are the

magnetic permeability(# ), electric permittivity(€ ), and

electric  conductivity(O' ), - which  correspond  to
Tomography (EMIT)[8],
(ECD[9]

(ERT){10],

respectively. In all of the above tomographic techniques,

Electro-Magnetic  Inductance

Electrical Capacitance ~ Tomography and

Electrical Resistance Tomography
the relationships between the electromagnetic quantities
inside the object and sensing quantities on the surface
are described by the Maxwells equations [1].

Electrical Tomography(EIT), the
quantity to be imaged is actually the impedivity (inverse
of admittivity) so that it includes both ECT and ERT.

However, more frequently in EIT it assumed that the

In Impedance

resistive part of the impedivity dominates and estimate
only the resistivity (inverse of conductivity) distribution
inside the object. The physical relationship between the
internal resistivity and the surface voltages is governed
by a partial differential equation (Laplace equation) with
appropriate  boundary  conditions. Owing to the
complexity of this relationship, it is in most cases
impossible to obtain a closed-form solution for the
resistivity  distribution. Hence, various reconstruction
algorithms have been developed in the literature to
estimate the internal resistivity distribution of the object.

However, most of the reconstruction algorithms
presented so far are mainly focused on the case where
the internal resistivity of the object is time-invariant
taken a full of
independent measurement data. As is well known, the
EIT

backprojection or

within the time to acquire set

such
(mNR)

algorithm use a full set of voltage measurements for

conventional imaging = techniques as

modified Newton-Raphson

each image [11,12]. However, in some real applications
such as biomedical and chemical processes, these static
imaging techniques are often fail to obtain satisfactory

temporal resolution for the reconstructed images due to

(154)
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the rapid changes in resistivity.
More

been developed to enhance the temporal resolution of

recently, dynamic imaging techniques have

the reconstructed images in the situations where the
resistivity distribution inside the object changes rapidly
in time. In most of these techniques, the inverse

reconstruction problem 1is treated as state estimation
problem and the time-varying state is estimated with the
aid of linearized Kalman filter (LKF)[13-17]
extended Kalman filter (EKF)[18, 19].

Quite often

or

in real situations there are partially
known fixed internal structures inside the object. These
internal structures can be, for example, an impeller
drive shaft or a mixing paddle in process vessels and
The

in

an assembly of fuel rods in nuclear reactor.

internal structures inside the object may results
difficulties in the image reconstruction in EIT especially
in the case where the high resistive region is near the
conductive internal structure or vice versa[20, 21]. The
so-called masking effect in the reconstructed image may
be significant for the high-contrast case. There are two
ways to get around these difficulties; the one is to use
the internal structure as additional electrodes [20, 22,
23] and the other is to take into account it as a priori
information in the inverse procedure [21]. However, all
of the above approaches are for the case where the
resistivity distribution inside the object is time-invariant
for one classical frame.

The purpose of the present work is to develop a
dynamic EIT reconstruction algorithm for the case
where the fixed internal structures are known partially
and the resistivity distribution of the other part inside
the object changes rapidly within the time taken to
acquire a full set of independent measurement data. To
achieve the purpose, additional electrodes are attached to
the known internal structure. The inverse problem is
treated as the state estimation problem and the unknown
state (resistivity) is estimated with the aid of the EKF

in a minimum mean square error sense. In other to deal

with the well-known ill-posedness of the EIT inverse
problem, smoothness assumption is made and the
modified Tikhonov regularization technique is also

introduced in the cost functional.

We carried out extensive computer simulations with
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synthetic data to illustrate the reconstruction
performance, and to investigate the effects of additional
internal electrodes on the spatial and temporal resolution
of the reconstructed images.

The rest of the paper is organized as follows. In
Section II, we formulate the EIT forward problem based
on the complete electrode model (CEM)[16, 24] and
describe the numerical solver by the finite element
method (FEM). The inverse solver based on the EKF is
presented in Section III, where the inverse problem is
treated as state estimation problem in a minimum mean
square error sense. Extensive computer simulation results
are given in Section IV. Here, special attention is given
to the effects of additional internal electrodes on the
spatial and temporal reconstruction performance.

Concluding remarks are given in the final Section.

[l. Formulation of the Problem and
Forward Solver

When electrical currents Ik (1=1,2,..,L) are injected
into the object Ler2 through the electrodes el
(1=172,..L) attached on the boundary 02 and the
resistivity distribution O(x,y) is known for the .Q, the

corresponding electrical potential u(x,y) on the £ can
be determined uniquely from the partial differential
equation, which can be derived from the Maxwell

equations:
(L )_ - '
v ( P vul=0 i Q )
with the following boundary conditions based on the

complete electrode model :-

1 _du _
u+21p on _UI,
x€e;, I=1,2,...,L (2-a)

1 du o
felp on dS_II,

x€e;, (=1,2,...,L (2-b)

L

=0,0m 0\ U g
=1 (2-¢)

=
[«33(«5Y
x‘&

where, zl is the effective contact impedance between
Ith electrode and electrolyte, Ul is the potential on the
Ith electrode, el is Ith electrode, n is outward unit
normal, and L is number of electrodes. Despite different
form of the boundary conditions may be used in the
forward model, we choose the CEM which takes into
account the discrete electrodes, effects of the contact
impedance, and the shunting effect of the electrodes.

In addition, the following two constraints for the
injected currents and measured voltages are needed to

ensure the existence and uniqueness of the solution:

I
2 Li=0 G-0)

L —
2 Ui=0 (3-6)

The computation of the potential u(x,y) on the £
and the voltages Ul on the electrodes for the given
resistivity distribution p(x,y) and boundary conditions is
called the forward problem. In general, the forward
problem can not be solved analytically we have to
resort to the numerical method. There are different
numerical methods such as the finite difference method
(FDM), boundary element method(BEM), and finite
element method (FEM). In this paper, we used the
FEM to obtain numerical solution. In FEM, the object
area is discretized into sufficiently small elements
having a node at each corner and it is assumed that the
resistivity distribution is constant within each element.
The potential at each node and the “referenced”

electrode voltages, defined by the vector

ve RY"L-1 are calculated by discretizing (1) into

Yv=rc, where Ye R (M+L-1)x(M+L~-1) is
so-called stiffness matrix and M is the number of FEM
nodes. Y and ¢ are the functions of the resistivity
distribution in the object and the injected currents
through the electrodes, respectively. For more details on
the forward solution and the FEM approach, see {16,

25]}.
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lll. Inverse Solver Based on the
Extended Kalman Filter

In case where the resistivity distribution inside the
object changes rapidly within the time taken to acquire
a full set of independent measurement data, the
conventional imaging techniques which need a full set
of voltage measurements for each image often fail to
obtain satisfactory temporal information on the resistivity
distribution. We consider the underlying inverse problem
as a state estimation problem to estimate rapidly
time-varying distribution of the resistivity. In the state
estimation problem, we need so-called the dynamic
model which consists of the state equation, i.e., for the
temporal evolution of the resistivity and the observation
equation, i.e., for the relationship between the resistivity
and boundary voltage.

In general, the temporal evolution of the resistivity

distribution @, in the object 2 is related by the
nonlinear mapping. Here, the state equation is assumed
to be of the linear form, of which the modeling
uncertainty is compensated by the process noise
Orr1= Fpopt w, )]
where F,ERNxN is the state transition matrix at
time k and N is the number of finite elements in the
FEM. In particular, we take F.=1y where Iy
RNxN is an identity matrix, to obtain the so-called
random-walk model. It is assumed that the process
error, wk is white Gaussian noise with the following
covariance which determines the rate of changes in
resistivity distribution
It = Elw,- wyl ®)
Let U,ERL, defined as
U=lUVUL . UslT ()
be the surface measurement voltages induced by -the
kth current pattern. Then the observation equation can
be described as .the following nonlinear mapping with
measurement error
U,= V(o) + v, @)

where the measurement error vk is also assumed to

be white Gaussian noise with covariance
— T
I'=Elv, - v;] ®)
Linearizing (7) about the current predicted state
© 4r—1 we obtain

U= Viloge-1) + Jloge-1) - (0p— op—)
+H0O.T+v, ®

where H.O.T represents the higher-order terms which
will be considered as additional noise, and
Tl 0 ge—1)E R ¥ is the Jacobian matrix defined
by
oV,
rrall
0 s, (10)

Let us define the pseudo-measurement as

]k( 4 k|k—1)E

yv,=U,— Vk(p,ak_l) + ]k(pkik—l) * Pre-1 an
Then we obtain the linearized observation equation

by considering the H.O.T in (9) as additional noise

Vo= JTlog—1) - 0+ v
& ENOHE—1 £ 3 a2)
where Vi is composed of measurement error and
linearization error and also assumed to be white

Gaussian noise with covan'ancé as
I'c = E[vevi] _ (13)

k In Kalman filtering we estimate the state O
based on all the measurements taken up to the time k.
With the Gaussian assumptions the required estimate is
obtained by minimizing the cost functional which is
formulated based on the above state and observation
equations (4) and (12), respectively. The cost functional

for the conventional Kalman filter is of the form
G(p)= %{” Pr = P ”CI[LI
+ Iy, =T (Prua) - P '”(F,‘)A! } s

where C;dk_lE R ¥ is the time-updated error

covariance matrix, which is defined by

— T

Cklk—l = E[(p; — Pus P = Put) ] 15)

In order to mitigate the inherent ill-conditioned
nature of the EIT inverse problem, additional constraint

is included in the cost functional

156 )
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G (p)=4{lp, = puy eey
Fot 1O IR p, I} (16)

Hlhy, =T (Pric) - P Nl

where (@ is regularization parameter which is chosen
a posteriori, and R* is modified regularization matrix.
One popular conventional method for the choice for the
regularization matrix R is a difference-type matrix on
the basis of the generalized Tikhonov regularization
technique[18] by the the smoothness assumptions in
resistivity distributions. In this method, the resistivity
distribution is parameterized such that

N
p —"Z::,p"xn an

where X» is the characteristic function of the nth

finite element. The ith row of R is

R =(00,..0-190...0,-10,..030,..0-10,.0) (13

where 3 is located at the ith column and 1 is placed
the

common edge with the ith element. Sometimes in real

in columns corresponding to elements having
situations, there are partially known internal structures

in which additional electrodes can be attached. In this

regularization matrix R® s
1 in (18) that

corresponds to element having common edge with the

case, the modified

obtained from R by removing the

known internal structure. In that case, the number 3 in
(18) the

assumption is violated between the known element and

is also replaced by 2 since smoothness

background.
Define the augmented seudo-measurement
g p
Vi € R(hNN, and  pseudo-measurement  matrix,
Hk e R(L+N)xN as
- _(%
=
0 (19)
Jy
H, = N
~JoR (20)

Then the cost functional, (16) can be rearranged as

Gp) =11 p = Prsas ”CZ' +Iy, —H,p, "(l'k)"} @21

k-1

where the augmented covariance matrix,

(157 )
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(L+NYX(L+N)
rk €R is defined by

T, = Blockdiag[T, I, 22)

Minimizing the cost functional in (21) and solving
for the updates of the associated covariance matrices
the
algorithm which consists of the following two steps[26,
271

(i) Measurement Updating Step (Filtering)

G, = Cklk—lHkT[Hkalk—lHkT +T I

we obtain recursive  extended Kalman filter

(23)

Cklk =(I- Gk Hk )thk-l 24)

Pux = Pk +Gk[yk —H, pul 25
(ii) Time Updating Step (Prediction)

Cone = F,C,F, kT +I7 (26)

Pivie = kaklk 27

Hence, we can find the estimated state Oy for the

true state ©Op in a recursive minimum mean square
error sense for k=1,2,..rK, where K is the number of
the independent current patterns and r is the number of
the classical frames. As a result, the only difference
between the conventional EKF and the proposed EKF
which includes a priori information for the partially
known internal structure is that the dimension of the

measurement updating procedure is increased.

V. Computer Simulations

We carried out extensive computer simulations with
synthetic data to evaluate the reconstruction performance
the the
complete electrode model with the contact impedance of
0.005Qcm(Z,) is employed.

The FEM meshes without internal electrodes used for

of the proposed algorithm. In simulations,

the forward and inverse solvers are shown in Fig. 1 (a)
and (b), respectively. In the forward computations we
used the FEM with a mesh of 2400 elements and 1281
nodes (M). In the inverse computations, we used the
FEM with a mesh of 600 elements (N) and 341 nodes
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@ (b)
Fig. 1. FEM meshes without internal electrodes used for (a) forward solver and (b) inverse solver.
a1 WE AZE AFREA] &2 Uyt FEM mesh(@) A4 mesh (b) SFA mesh
to reduce the computational burden. For the current and (b), respectively. In the forward computations we
injection and corresponding voltage measurement, used the FEM with a mesh of 2544 elements and 1368
traditional adjacent method[1] was employed through 16 nodes (M). In the inverse computations, we used the

boundary electrodes(L) so that the total measurement
voltage data were 256(16x16).
The FEM meshes ‘with 4 internal electrodes used for

the forward and inverse solvers are shown in Fig. 2 (a)

FEM with a mesh of 636 elements (N) and 366 nodes.

We injected electrical current between 16 boundary
electrodes and one of the internal electrode and
measured the corresponding voltage on the 20

(@

(®)

Fig. 2. FEM meshes with 4 internal electrodes used for (a) forward solver and (b) inverse solver.

Z0
78—1._2‘

%2, 4748 U

( 158 )

A}&-3F FEM mesh (a) A 4] mesh (b) 954 mesh
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© (@

Fig. 3. Reconstructed images from the first simulation. (a) True target images, (b) reconstructed images by the

EKF, (c) reconstructed images by the EKF-IE and (d) reconstructed images by the mNR-IE.

A=K

298 4 9 @ AA B $HYY () EKFl| 93 Hdd 94

(c) EKF-IE9] 9J3) E9% 94 (d) mNR-IES] ol EdH 94

electrodes(L) so that the total measurement voltage data
were 320(20x16).

To compare the reconstruction performance, we used
based the  modified
algorithm with internal electrodes
(mNR-IE)[23], dynamic algorithm based on the extended
Kalman Filter (EKF)[18], and the Extended Kalman
Filter with internal electrodes (EKF-IE) described in this

the static  algorithm on

Newton-Raphson

paper. The parameters used for the three methods are as

follows. The regularization parameter ¢ is set to 0.5 in
both simulation. The initial resistivity value is set to the
For
simplicity, it is assumed that the covariance matrices for
all the EKFs The

same as the background value in all cases.

are diagonal and time-invariant.

( 159)

covariance matrix for process noise( I'% 'y is 10IN the

covariance matrix for measurement noise( I % ) is

0.0001IL and the initial value for the state error

covariance matrix ( C 10 ) is IN in both simulations.

4.1.1 The first simulation

We generated the following sequence of resistivity
We

is known non-conductive circular

distributions to simulate a dynamic situation.
assumed that there
structure (about 1 c¢m in diameter) located at the center

of the domain, in which four electrodes are attached.
An almost circular-type target (resistivity of 600LQcm)

was moved abruptly to the opposite site through near
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(a)

Fig. 4. Reconstructed images from the second simulation.(a) True target images (b) reconstructed images by the

(b)

© @

EKF, (c) reconstructed images by the EKF-IE and (d) reconstructed images by the mNR-IE.
a4, EdE T4 34 (@ 2A B4 FHFAE () EKFll g3 5dd 4
(c) EKF-IE°l &8 Hedd 94 (d) mNR-IES] 98 Hd€ F

the center after 4 current patterns in a circular

300R2cm

resistivity) as depicted in the first column of Fig. 3.

domain(8¢cm in  diameter, background

Fig. 3 shows the reconstructed images for the three
The the
reconstructed by the EKF without internal electrodes. As

methods. images in second column are
can be seen clearly, the location (temporal resolution)
of the moving target is rather misleading especially
when the target is located near the non-conductive
center of the domain(2nd and 3rd rows in the 2nd
column). It seems that the er;ér may be generated from
Also, the

background was éeverely blurred by the non-conductive

the masking effect for the high-contrast.

circular structure. The third column represents the

(160 )

the EKF-IE. As
expected, the reconstruction performance is improved
of the
resolution. The reconstructed images obtained from the
mNR-IE (fifth

information on the time-variability of the moving target

reconstructed images from can be

qualitatively in terms temporal and spatial

column) are also blurred and the

is lost since it requires a full set of measurement data.

4.1.2 The second simulation

the

scenario for the

In second simulation, we assumed the same

internal structure as in the first

simulation. However, an almost circular-type target

(resistivity of 60082cm) was moved abruptly by 900

clockwise after every 4 current patterns in the same



Dynamic Electrical Impedance Tomography with Internal Electrodes

circular domain as in the first simulation (the first
column of Fig. 4).

Figs. 4(b), (¢) and (d) represent the reconstructed
images obtained by the EKF, EKF-IE and mNR-IE,
respectively. As can be seen, the images reconstructed
by the EKF without internal electrodes are severely
blurred in the homogeneous region (the second column).
However, the reconstruction performance of the images
obtained by the EKF-IE is enhanced qualitatively(the

third column). Also, the temporal information for the

abruptly changing targets is severely lost in the
reconstructed images by the mNR-IE (the fourth
column).

V. Conclusions

Quite often in real situations, there are partially
known fixed internal structures inside the object, in
which additional internal electrodes could be attached.
EIT

algorithm for the case where the fixed internal structure

we have proposed a dynamic reconstruction
are known partially and the resistivity distribution of the
other part inside the object changes rapidly within the
taken set of
measurement additional

electrodes are attached to the known internal structures.

time to acquire a full independent

data. In doing so, internal

EIT inverse problem is formulated as a state estimation

problem and the state (resistivity distribution) is
estimated with the aid of the EKF after the voltage
measurements corresponding to each current pattern.

Computer simulation results showed that the proposed
method produces qualitatively better reconstruction
performance in the sense of the spatial and temporal
resolution than do the other existing methods such as
conventional EKF and mNR.

Of course,

there are many alternatives to the

extended Kalman filter used in this paper. For example,

linearized Kalman filter can be replaced by the
extended Kalman filter to reduce the on-line
computational burden. Further research will be carried
out to test the reconstruction performance of the

(161)
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proposed technique for more complicated real situations.
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Dynamic Electrical Impedance Tomography with Internal Electrodes
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