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Background: Nitric oxide (NO), a cytotoxic molecule is produced in various tissues including tumor cells during
interleukin-2 (IL-2) therapy. Lymphokine-activated killer (LAK) cells are induced during IL-2 therapy, and have
cytotoxic activity againg tumor cells. The current sudy invedigated the effects of NO synthesized in target cells
or exposure of target cellsto NO on the sensitivity of target cells to LAK cell cytotoxicity. M ethods: Cytotoxicity
was measured using 4 h chromium release assays. LAK cells which were induced by a 4 day incubation of
BALB/c mouse splenocytes with 1L-2 (6,000 1U/mL) were employed as effector cells. RD-995 sin tumor cells
originaed from a C3H/HeN mouse were employed as target cells. NO synthesis in target cells was induced by
a 24 h incubation of RD-995 cells with IFN y (25 U/mL), TNF (50 U/mL) and IL-1 (20 U/mL). S-nitrosy!
acetylpenicillamine (SNAP), an NO donor, was used to expose target cells to NO. N°-monomethyl-L -arginine
(MLA) and carboxy-PTIO were added during cytotoxicity assays to inhibit NO synthess, and to scavenge NO
produced by target cells, respectively. Results: Sensitivity of NO-producing RD-995 cells to LAK cell cytotoxicity
was decreased by addition of MLA and carboxy-PTIO during cytotoxicity assays. However, the two reagents had
no effect on the senditivity of non-NO-producing RD-995 cells. Pretreatment of RD-995 target cells with SNAP
increased the sensitivity in comparison with untreated cells. Conclusions: Senstivity of target cells to LAK cell
cytotoxicity is increased by target cell NO synthesis or exposure to NO. Further sudies are needed to evaluate
whether these in vitro results have relevance to in vivo phenomena.
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Table 1. Cytokine-induced nitrite production by RD-995
target cells

No Cytokine Cytokine
MLA experiment 12y M 2y M
C-PTIO experiment o9 M 1099 M

Following a 24 h incubation of confluently grown RD-995

cells in the presence of IFN ¥ (10 U/mL), TNF (50 U/mL)

and IL-1 (20 U/mL), nitrite production was measured in

the cell-free culture supernatants. (Representative data from

three experiments)

MLA : N°-monomethyl-L-arginine,

C-PTIO: 2-(4-carboxypheny|)-4,4,5,5-tetramethylimidazoline
-1-oxyl 3-oxide

24 NO
nitrite
RD-995
(Table 1).
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7. LAK
4 chromium . 5x 10°
RD-995 [51Cr] sodium chromate 0.1 mCi
0.1mL PBS 37 1
2 105 /mL
LAK (5 10° /mL) . 9 well
microtiter plate 50:1, 25:1,
12.5:1 6.25:1 4
. spontaneous release
(10 fwell) total release
(10 fwell)  0.5% Triton X-100
microtiter plate
400 g 5 0.1 mL

gamma counter
. % cytotoxicity

% cytotoxicity =

experimental release spontaneous release

————————————————————— x 100
total release spontaneous release
8. NO
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-L-arginine (MLA) 625 uM 250 uM
NO
NO 2-(4- carboxyphenyl)-4,4,5,5-
tetramethylimidazoline-1-oxyl ~ 3-oxide (carboxy-PTIO)
150 nM 300 nM
9.
Student t-test p<0.05
1 NO LAK
NO NOS
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Fig. 1. Effect of inhibition of target cell NO synthesis on the sensitivity to LAK cell cytotoxicity. LAK cell cytotoxicity
directed against NO-producing (A) and NO-nonproducing control (B) RD-995 target cells was measured in the

presence or absence of NG-monomethyl-L-arginine (NOS inhibitor) using a 4 h chromium release assay. (mean =+
SD of triplicate samples)
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Fig. 2. Effect of scavenging of NO synthesized by target cells on the sensitivity to LAK cell cytotoxicity. LAK cell
cytotoxicity directed against NO-producing (A) and NO-nonproducing control (B) RD-995 target cells was measured

in the presence or absence of carboxy-PTIO (NO scavenger) using a 4 h chromium release assay. (mean + SD of
triplicate samples)
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Fig. 3. Effect of pretreatment of target cells with an NO
donor (SNAP) on the sensitivity to LAK cell cytotoxicity.
LAK cell cytotoxicity directed against RD-995 target
cells pretreated with SNAP was measured using a 4 h

chromium release assay. (mean * SD of triplicate
samples)
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