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Fast Algorithm for Constructing Wavelet Packet Bases Yielding
the Maximum Coding Gain

(Won-Ha Kim)
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Abstract

This paper develops the fast dynamic programming technique to construct the subband structure

yielding the maximum coding gain for given filter bases and a given limit of implementation
complexity. We first derive the unified coding gain which can be applied to non-orthogonal filter
basis as well as orthogonal filter basis and to arbitrary subband decompositions. Then, we verify
that the unified coding gains in real systems are monotonically increasing function for the
implementation complexities which are proportional to the number of subbands. By using this
phenomenon, the implementation complexity and the coding gain are treated in the same way as the
rate and distortion function. This makes it possible to use the Lagrangian muitiplier method for
finding the optimal subband decomposition producing the maximum coding gain for a given limit of

implementation complexity.

I. Introduction

Subband coding (SBC) has often been used for
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signal conpression as a valuable tool. SBC decomposesa
signal frequency space into groups of subbands in

.order to increase the signal energy compaction.

(74)

SBC distributes the given coding bits economically
among subbands, because subband signals with
low energy are encoded by lower quantization
levels or discarded altogether.

The coding gain evaluates the performance of
an SBC. The coding gain is defined as the ratio
of the input signal variance to the geometric mean

of the subband signal variances. The coding gain
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actually an SBC with the direct
quantization scheme called Pulse Code Modulation
(PCM).

assumption that the quantizer bits are the most

compares

Since the gain is obtained under the

efficiently allocated, it directly reflects the signal
energy compaction property of filter banks used to
implement the SBC and the subband decom-
position of the SBC. Therefore, an SBC should be
designed to have optimal filter banks and optimal
subband decompositions, yielding the maximum
coding gain.

This paper first derives the unified coding gain
structure of subband
decompositions and any kind FIR filters including

which works for any

linearly phased filter as well as orthogonal filter,
and then the paper develops the fast dynamic
programming technique to search for the optimal
subband decomposition within the allowed limit of
implementation complexity.

Soman et al, derived the coding gain for
arbitrary subband decomposition, but they do not
deal with linearly phased filter bases™. Katto et
al, derived the gain for any kind of filter basis
and for multilayer subband decompositions like
wavelet tree decompositionlz], but their coding gain
does not cover an arbitrary subband decomposition
such as wavelet packet decompositionm. Katto
also optimized the filters from the view of energy
compaction, with the certain statistic model of
signal. Such trials
coefficient under the statistic model of input signal

input to optimize filter
was also made by Uzun et al, for two channel
filter banks[4], and Caglar et al, for orthogonal
filter banks®, However, the approach to construct
the optimal subband decomposition has not been
made, as far as the author’s knowledge goes.

The remaining of this paper is organized as
follows: In section 1, notations will be defined,
and the wavelet packed based SBC will be
analyized in connection with the notations. Section
2 derives the unified coding gain and defines the

optimization problem mathematically. In section 3,

(75)
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a procedure to find the optimal wavelet packet
structure based on dynamic programming will be
presented. Applications of this proposed algorithm
are reported in section 4. Finally, the conclusion is

drawn in section 5.

II. Wavelet packet subband
decomposition

The tree structured connections of QMFs realize
which
implies that the QMF tree realizes the wavelet

a non-uniform subband decompositions,

packet bases. An example of a tree structured
QMF is shown in Figure 1, where H,(z), H\(z)
re the transfer functions of low and high analysis
filters and F,(2), Fi(2) are the low and high
synthesis filters®. If the non-uniform subband
decomposition a perfect reconstruction (PR)
system, HJS(z)=-F,(z), H(z)=F,(—z). The
QMF tree can be represented by a binary tree.

is

For mathematical analysis, it is necessary to
formulate the tree in association with filter bank

theory as followings:

® S ! The set of nodes of a QMF tree. The
root node is numbered as 1. Node 2i and node
(2{+1) are child nodes of node i A branch from
node
either by H,(2) followed downsampler in analysis

i to node 2i performs a lowpass filtering

filter banks, or by F,(z) following an upsampler
in synthesis banks. A branch from node i to node
(2{+1) performs a highpass filtering by either
H(z) followed by a downsampler in analysis
filter banks, or by F(z) following an upsampler
in synthesis banks. A subband number is labeled
as the corresponding node number.

® 1.(S) : The set of leaf nodes of tree S.
Subbands corresponding to leaf nodes determine a
[L(S)} to denote
(ie, the number of

subband decomposition. We use
the number of channels
subbands).
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(a) Tree-structured connections of QMFs
Subband 11Subband 10
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(b) Non-uniform subband decomposition by the above QMF tree
38 1. W 7E QMFSE 2wl AREE Bl o o] QMF U9 #F viF At LS)={4, 6, 7,

10, 11}o]tt

Fig 1. An example of tree structured QMFs and its nonuniform subband decomposition. The leaf node set

of this QMF tree is L(S)={4,6,7,10,11}.

® d; ! Depth of node 7, That is, d;= L logyi |,
| x}is the greatest integer that is smaller
than x. Thus, the subband size of the node i

. 1
/2%, and E%S) 57 =1

where

is

& p'(n), H'(z) The analysis filter, and its
response which construct subband :. This filter
bank is equivalent to the di connections of QMF
banks.

® f(n), Fi(n)

response which are counter parts of A(#), H(2).

The synthesis filter, and its

Let the indexed-subscript ¢, be 0, or 1. £;=0

indicates a lowpass filter at the jth level of the
QMF tree while &;=1 indicates a highpass filter.

of QMFs along
calculated by the

the the path

following

connection

is

.....

(76)

recursively performing convolutions ®

8]

the signal filtered by the analysis bank
represented by

s

(2)

.......

where x(») is an input signal. The corresponding

synthesis filter /.,
defined as

{m) can be also recursively

e ()= ffd(")*fel.»-..f,.(%) 7 even 3)

0 n odd

So, the equivalent synthesized signal is
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Quanization Decoding
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Analysis 'c ’ ’V ’J . Synthesis
Filter Bank RS Filter Bank
sas]| ) Q Q']
Codebooks
Digital Channel
(a) SBC System
q,m
X(n) : . X () l Xm+ qn) X+ e
T R G R
Transmitter Receiver
(b) A channel system based on quantization noise model
a7 2. () Hudl= REs AxEl (b) JEde =3717) /2% Ad
Fig. 2. (a) Subband Coding System. (b} A channel whose subband size is z/2%.
X (n)= i yom) - £ (=27 m) (4) reconstruction error e;(n), i #j. Therefore, the
N T - reconstructed  signal of the SBC is x(n)=

where y(n) is input signal to the filter, /., .(n).

M. Formal Problem Definition

1. Unified Coding Gain

Figure 2 depicts a practical SBC system and
magnifies one of the channels. Without loss of
generality, we can assume that the subband
decomposition of the SBC is S, and the subband
size of the depicted channel is #/2% ieL(S). In
order to make theoretical analysis be possible, the
embedded the

subband i1 is assumed to be an additive white

quantization noise g,(n) into

process and uncorrelated with the subband signal

x{n). From this uncorrelation, the channel

reconstruction error ef{x) is produced by only

g{n) and is also uncorrelated with the channel

reconstruction signal x(») and other channel

2y (Klm +em)=x(n)+e(n), where x(n) is

the original signal and e(n) is the reconstruction
error of the SBC and E{|e(n)|?}= iEZES)E{Ie,-(n)IZ}.

Through the following analysis, the
reconstruction error variance for a nonuniform
subband coder is obtained in terms of the
subband signal variances.

Therem 1 : The reconstruction error variance
of an SBC Efe(n)? satisfies following
inequality:

7
E{le(n)%} = lg;s) A

17z T (& 317G
)

where 0%, is the quantization noise variance of the

subband i whose size is 7/M;= /2%, and fi(m) is
the synthesis filter to construct the subband i.
Proof: The wide sense stationary (WSS) signal
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after an interpolator becomes a cyclostationary
process with the period of the interpolation rate g
e,«( )

in Figure 2 is a cyclostationary process with the

Therefore, the channel reconstruction error

period M, The periodic autocorrelation of e(n) is
obtained as following;

Rin,n+m = Ele{n)eln+m)} from )
= 22Eadn - ads)} - fln—oM) - F(m+n—sM)

= Z:ZS:qu(r—s) - Fln— M) - Flm+n—sM).

And, the autocorrelation  of

cyclostationary process is computed by taking the
18l

average a

time average with respect to cyclo—-period
Thus, we have

Rm)=

ﬁa

D= M) - Fl+n—sM) - R (r—s)

M+ n—7M).

The middle
R (r—9)= 03, .

above

because the quantization

equation from
Mr—s),
noises are white processes.

From E{le{n)*} = "R.0), E{le{m)|*}

such that

comes

calculated

is

& M=l
ElledmY=—1 2 M=

;2;; Srim)?

Since ,5;25)1/2"':1, the arithmetic and geometric
mean inequality leads to following;

1d;

E{le(n)?}= igis)E{le,-(n)lz}Z t_E]J ( - 2lf(m)l )

QED.

represents the

Therefore, (5) is proved.
The filter energy zmllf i(m)|?
factor of the distribution of energy by the

subband filter and may be regarded as a weight
factor for the subband. This weight factor takes

dlol &8l 7IHE P& AT

(78)

2% dauzs £&In
into account the quantization noise leakage to

other  channels. For orthonormal bases,

zmllf"(m)l !—1, so the quantization noise does not

suffer from energy leakage to other channels.

Following the wusual way to derive the
conventional coding galn[g] [10], we obtain the
unified coding gain for a subband decomposition S
as follow:

0,2
G(S) = . (6

7K
ie];[a(ﬂ %) l

where /5'i=;|f{(m)|2, ¢ is the signal variance of

input signal, and % is the signal variance of

subband 1. From (2) the subband signal variances

are expressed in terms of the input signal

correlation R (& such as

&= E{|x(n)*}

=;Zh"(2"'n—m) CH@ =0 Ro(m—1) M

Therefore, if the input signal correlation is known,
the filter coefficients can be also optimized in
sense of the coding gain for a fixed subband
decomposition, after plugging (7) into (6).

2 Problem Definition

As seen in (6), the geometric combination of the
subband signal variances decides the coding gain
and the combination is determined by subband
decompositions. Therefore, the task of this study
is to construct the optimal subband decomposition
yielding the maximum coding gain for a given
complexity. Generally, the coding gain improves as
the number of subbands increases. But, the larger
of  subbands the
implementation complexity which is limited in real
world. Let W(S) be the implementation cost
distribution, that is, W(S)= {w; | i€L(S)}, where

number requires more

w; is the cost for implementing the subband .

Some examples of w; are the number of filter,



20014 37 EFILEH

the computation load, or the number of subbands.
For the number of filter banks, w;=d; because d;

branches are needed from the root node to node

¢, and each branch contains one filter. For the
d,
computation load, w;= 211/2” since the subband

signal size at each node is directly proportional to
the subband size at the node. For the number of
subbands, w;-, since a leaf node generates one

subband. The total implementation complexity is
denoted as |W(S)I= I,E;S)w,-.

For a given implementation complexity W(S),

the problem is formally defined as;

o
ie];[S)( 8 i"zxf) "

subject to  |W(S)|= I_E;s)wiSW

After taking the logarithm through (6), the

optimization problem (8) can be restated as

mins 0(9)=0(S)=minsf 33 —rlog(8%)] )

subject to [W(S)I= I,g;s)wiSW.

IV. Optimization Algorithm

A direct way to solve the above optimization
problem (9) is to search all possible subband
decompositions for the optimal subband structure
that bears the smallest lower distortion bound.
Since such an exhaustive does not prune the
non-optimal subtrees, the expensive computation
loads required to carry it out are not justified.
Furthermore, possible  subband
all  kinds of
implementation cost would be a mammoth task.
For there subband
decompositions for N subbands, and the subband

to construct

decompositions  according  to

example, exist 2W D

number NS is an irregular function of cost

=+
i

£3BE CliE #2% 21

w; i€ L(S). Therefore, a fast pruning method is
required instead. This study uses an unconstrained
optimization problem with Lagrange multiplier to

solves (9).

1. Performance Analysis as Number of Subbands

In general, the reconstruction error of an SBC
decreases as number of subbands increases. In
order to understand the better performance of the
higher subband numbers, one must observe the
change in the reconstruction error variance when
subbands are increased by one. If a two-channel
QMF splits a subband i into two disjoint half
subbands 2¢, 2i+1 each of which covers disjoint
half of the parent subband, the subbands are
increased by one. It can be deduced from (9) that

the portion of reconstruction error variance due to
the signal of subband i is (1/2“)logBd%. In the
same way, the reconstruction error variance due
to the signals of subband 2¢, 27+1 is '

# log ﬂziozxz, + # log 8 2i+ 1(7212”1

= “2‘137 log ( B2i0%,82i410%,,) "
since dgy=dy.1=d;+1. Therefore, the change in

the
splitting a subband to

reconstruction error variance caused by
increase the subband

number is as follow

4;= # 108 ( B2:0%, 2410 %0.) v #

(@ozxz,ﬂ 2i+ 16212.+1) ”
€ B iozx,

log Bi62,

ﬁlo

For most of practical filter banks constructed by
wavelet basis, the weight factors B, 8 and Bair)

are sufficiently close to 1 when compared to the

signal variances o%, ¢, and &%, . So, 4; can be
approximated as
02;; o_zx 1/2
sim o (5" 10
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Because the numerator term of 4, forms the
geometric

mean of d%, o%,., 4dreaches to the maximum

and o

when o, o, are getting closer. Recalling

that the subband ¢ is split by the lowpass filter
Hy(2) and the

highpass filter H,(2)
o, and o,
The

to generate the subband 2i
to generate the subband
2i+1, are closest when S, (e™)

Sx,-x, (ejw) = '72;:;

possible, only when x;(») i1s a white process. The

is constant. constant is
power spectrums of xg; (), x5:4, (n) are expressed
in aliasing terms of the power spectrum of x; (%),

following'®;
;IH( Ho— 27(k)/2)| S, ( lw— 27rk)/2) (11)

S €)=

where H((z)=Hy(z) if k=2{ and Hfz)=H(2)

if £=2+1. Applying S, (e™)=4% and the
Parseval theorem to (11) obtains
P = Dh(m) 2, and &, =, 2 lhim)I2

Therefore, the maximum of 4; will be

4 ==L log (S o(m)] > e ()| 2) 1

2
The filter energies Xlhg(m)|?, Dk (m)® are also
approximately 1 for practical filters, so 4..=0.
Furthermore, in meaningful signals, such as an
image signal and a speech signal, their energies
are concentrated on certain frequency bands,
which that 4; < 4.

practical cases, the reconstruction error variance

implies Therefore, in

change due to splitting a subband i will be

1/2

2 2
1 log ,321‘012‘ 5(2{+ NIETN
d; 2
2 Biax,

4= € pax =0, (12)

The conclusion is that 4; is negative, and that

splitting subbands decreases the reconstruction

error variance of an SBC.
(12),

Lemma 1 : If splitting a subband satisfies

£ el AAE

(80)

<t
A

T587] 9% 14 gz n|

[y

the reconstruction error variance function 0(S)=

9 21d log (B;0%) is a monotonically decreasing

funcrion of the number of subbands.

Proof : We prove this lemma by the following
induction on the subband number [L(S)|. Let S,
be the
subbands, that is,

having n
|L(S)l=mn. The subband S, is

subband  decomposition

generated from S,

ieL(S, ;). From (12),

by splitting a subband
[L(S»)|=2. Assume that
|[L(S)l=n. Now, the node
ieL(S,) splits into the two child nodes 2i, 2
+1. The split structure’s subband number is
[L(S,s)l=ntl. Let L*(S,)=L(S,)—{i},
L*(S,41) = L(S,4y)— Then, L*(S,)=
L*(S,+1), and IL"(S,)|=#x—1. Therefore,

it is also ture for

and

{24, 2i+1}.

— 1 .
O(S,+1)= je%,ﬂ) 0 logﬁ,ozx,

=

(S 277

4 log 80" %

je (Em 9% log B,0%,

< Eg‘,{s) e logb’,dzx,-i— e log B; 0,

;S) Y logozx

Hence, 0O(S,+)<0(S,). This induction proves the
QED.

jeL

from (12) o(S,).

lemma.

2. Dynamic Program for Optimal Subband Decom~
position
The

optimization problem (9)

that the

is converted

next step is constrained
into an
unconstrained optimization problem with Lagrange
multiplier. The unconstrained problem develops a

fast dynamic program that prunes non-optimal

sub-decompositions appearing as non-optimal
sub-trees.

Theorem 2 : If the implementation complexity
function |W(S)| is increasing for the subband

number |L(S)], then the unconstrained problem for
fixed A>0,
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min g{ O(S) + AW(S)!}
= min 5{ iEZES)# log o’ +4- z‘e%s‘) wi } 13

solves the constrained optimization problem (9).
The optimal subband decomposition $* occurs at
[WSH=W..

Proof :If the implementation complexity |W(S)|
is increasing for the subband number [L(S)|, it
follows from Lemma 1 that the distortion function
0(S) is strictly decreasing for |W(S)l. Let S* the
solution of (13). Then for any subband structures
satisfying W(S)<W,, we have

O(SY+ A {WMSHN<O(S) + 4 - [W(S)]

or equivalently

£R8% Cle £ 2% 23

O(SH—O(S) < A-(|W(S)— WS
and so O(S)—O(S) < A- (IW(S)— W

which is equivalent to

oSH<O(S) for |[W(S)I=|WS") .

Because O(S) is strictly decreasing for |W(S)
and A>0, the unconstrained problem of (13) is
identical to the constrained problem of (9), and
the solution S* occurs at |WS™=W,. QED.

Theorem 2 implies that as A sweeps over
positive numbers, all the operating points of
implementation cost and distortion (0(A), WA))
are created and draw a convex hull.

Regarding the cost function W(S) as a rate

function, the convex hull is equivalent to the

E: 1. 34 Arulz B 93 daeE
Table 1. Algorithm for Optimal Subband Decomposition.

ALGORITHM Optimal Subband Decomposition
- Preset Maximum dept d and implementation complexity limit W.,.

- Store node values n,-=-# logd®, , w; at every node.

- L(S)—{ 29,2 =1 }.
- Set 4>, such that WA)< W.C WaA).
estep 1): /*Construct an optimal tree for A4,,>0.%/
Aoy O(A) = OO/ W) = WA )
For /=dto (=2  /* for nodes at depth [ */
For i=2"1t0 i=2'—1  /* for nodes i at depth / %/
/* If(parent node’s Lagrangian Cost > sum of child node’s Lagrangian Costs)
then split the node i Otherwise prune the node i. */
If (n42w)>(ny+iwy)+(ny+Ad wyypy), /* Split node ¢ */
then 7=zt nar, wi— wyut Was,
Else /* Prune the subtree hang on node i */
then L(S)<L(S)~{2i,2i+1}+{3.
i—i+2. /* for i */
—=I1—-1. /* for 1%/
® step 2): /+ Update 4'and 2. */
If (WM A,)> W), A «—A4". Go to step 1).
Elseif (W A,)< W), A < A,,.
Elseif (W 4 ,)= W,), stop.

(81)
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typical rate-distortion (R,D) curves. The difference

between (O,W) curve and (RD) curve lies in their

different cost functions. W treats implementation
complexity as proportional to the number of
subbands, R
Therefore, the proposed algorithm substitutes the
implementation cost function W(S) for the bit rate
(R,D) function.
This make it possible to apply the fast dynamic
E L

technique appeared i
essence of the algorithm is that at each node the

whereas is a coding bit rate.

R as found in conventional

programming

Lagrangian costs of parent node and child nodes
are compared, if the Lagrangian cost by child
nodes then the
hanging on the parent node is pruned. The tree

iS more expensive, sub-tree
formed by the surviving paths is optimal for a
fixed A>0, therefore, the algorithm constructs only
the optimal tree for a given A>0. The algorithm

is shown in TableI.

V. Applications

To demonstrate the proposed algorithm, the
optimal subband decomposition for Chirp signal is
constructed. The implementation complexity is set
up as the number of subbands, so w; =1, i<L(S)
IW(S)| =1L(S)|. The implementation com-
plexity budget is W,=3. The QMF filter adopts

and

the biorthogonal linearly-phased spline wavelet

1

237 99

b

&g

afN

&I

aL

Table 2. The subband weight factors 8;
calculated from (3) and shown in Table 3. Figure 3

are

34

Non-optimal

:
Convex Hull Subband Decomoposition

by Optimal Operating Points
of (IW(S),O(5))

v/

A= 10.6 dB

W, : Budget Line

SR

Optimal
Subband D iti

Reconstruction Error Variance O(S) in dB

.

i

e ]

4 B
implementaion Complexity [W(S)| : Number of Subbands

6

Chirp AlZell 3t (W(S), o(S)) A= 1
HA Ardle 33 45 e 17 F
7 gejE ez ofell&e] ¥ AT
55 d8E el

The (W(S), O(S)) curve for a Chirp signal
and its optimal subband decompositions. An
upper branch represents high-pass filtering
and a lower branch represents low-pass
filtering.

Fig. 3.

depicts the Chirp signal and its subband signals.
(G(S), W(S)) curve and the
optimal subband decompositions at each imple-
The optimal subband

decompositions occur at each convex hull points.

Figure 4 presents
complexities.

mentation

From Figure 4, the optimal subband decomposition
for W,=3 is L(S)={3, 4, 5.

filter that is popularly used for image With drastically reducing computation com-—
cornpressionm]. The filter coefficients are listed in plexities, another advantage of the proposed
z 2. 97 o]FA L ol &4 Uy
Table 2. 9-7 Biorthogonal Wavelet Filter.
n 0 +1 +2 +3 +4
27" ho(n) 0.602949 0.266864 -0.078223 -0.016864 0.026749
27" fo(n) 0557543 0.295636 -0.028772 -0.045636
E:d 3. Auwic 7)F <Ak g,
Table 3. Subband weight factor 2.
subband i 2 3 4 5 6 7 8 9 | .
B 0.98 1.04 097 1.02 1.02 1.08 0.9 1.07

(82)



20014 38 ETLLewmLEHE #3384 Clw £ 2%

25

(Resolution level 1)

TT 1T

VAV
2

(Resolution fevel 1/2)

ST

0 100

-2 -0.2

100

0

33 4. Chirp A1&9} 7 AHul= A3E ¢& 2AYY D,
dele)n 7 YolEal HH,

0 100 200
V v
(Resolution
0.6

=
e

0.04

~0.01

0

o /
level 1/4)

0.015

w

]

0.005

-0.03

0 160

-0.01

100

sk 3t

0

=

=

373} 53} gefelth

Fig. 4. Chirp signal and its subband signals. ¢ is the scaling filtering, i.e., the
low-pass filtering and & is the wavelet filtering, ie, the high—pass

filtering.

algorithm

implementation complexity. As Figure 4 indicates,

is that it discovers the reasonable
for the Chirp signal, 4 or 5 subbands can reach
saturation in the coding gain improvement, which
means that such numbers of subbands are

reasonable implementation complexities.

VI. Conclusions

In this paper, the unified coding gain which
works for any kinds of FIR filter basis and
arbitrary binary subband decompositions was
derived. This paper also developed a fast pruning
algorithm the binary subband

decomposition producing the maximum coding gain

to construct
for a given limit of implementation complexity.
The algorithm drastically

computational complexities but also discovers the

not only reduces
reasonable implementation complexity for a given

signal.

(83)
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