A7ledF(HLAdgn Ad71edFL =3, A21A8 AZ, 2001
Journal of Industrial Technology, Kangwon Nat’'l Univ.,Korea, No. 21 A, 2001.

dolel Wa =aadoA walo] BN B4

Analysis of Barrier Waiting Times in Data Parallel
Programs
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Abstract

Barrier is widely used for synchronization in parallel programs. Since the process
arrived earlier than others should wait at the barrier, the total processor utilization
decreases. In this paper, to find the sources of the barrier waiting time, parallel
programs are executed on the various grain sizes through execution-driven simulations.
In simulation studies, we found that even if approximately equal amounts of work are
distributed to each processor, all processes may not arrive at a barrier at the same time.
The reasons are that the different numbers of cache misses and instructions within

partitioned grains result in the difference in arrival time of processors at the barrier.
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1. Introduction

Barriers are commonly used for synchronization
among all the processors in parallel programs.
Upon reaching a barrier, the processor must wait
until all processors reach the barrier. Since
processors that are blocked at the barrier are
essentially idling, they cannot contribute to any
useful work. Barriers may be automatically
inserted by a parallelizing compiler or may be
introduced explicitly by the programmer. Even if
the compiler or programmer distributes the
computation so that all processors execute an
identical code, they may not arrive at a barrier
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time. If the code contains
different processors may

at the same
conditional statements,

follow different control paths, and thus they
execute varying number of instructions.
Furthermore, the times for memory accesses
may vary for different processors. The

processors suffering from cache misses may fall
behind in execution, hence late arrival at the
barrier even if all processors are executing
identical codes.

In data parallel processing, the workload
comprising large data sets is partitioned
according to the chosen grain size. The resulting
grains mean the sets of data elements and
occupy the contiguous blocks of memory. Under
such conditions, even if the same number of
grains is allocated to each processor, the grains
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loaded into processors’ cache result in the
different cache conflict misses in each processor.
In this paper, to study the sources of the
barrier waiting time mentioned above, data
parallel programs are executed under various
grain sizes and are analyzed to identify the
sources of variation in the barrier waiting time.
The waiting time at a barrier also resuits from
poor functionality in traditional barriers, since
processors reaching the barriers cannot find the
execution state of the grains running on the
other processors. In our experiment, we also
study the impact of the functionality in barriers.
The paper is structured as follows. In Section

2 related work is presented. Section 3 describes
data parallel programs and their grain size and
scheduling policies of grains used in this study.
Section 4 shows the simulation environment
used in this paper. In Section 5, we measure the
breakdown items of the processor execution
time, including the barrier waiting time under
the various grain sizes and analyze the sources
of the barrier waiting time. Finally, the

conclusion is presented in Section 6.

2. Related Works

There are many different implementations of
barriers. A  representative barrier is the
centralized barrier based on a giobal counter{89].
When using the centralized barrier, each
processor arriving at the barrier increments the
counter and then blocks on a single, shared,
completion flag. The last-arriving processor flips
the flag, allowing all of the processors to then
proceed. This barrier has been employed in
many parallel programs because of its usable
feature. But as the number of processors
a specific point at which all the
processors must synchronize causes a high
barrier waiting time. To solve this problem,
several studies have shown how to increase
scalability by building barriers based on a
point-to-point communication among processors
[10,11]. However, even with a tree-barrier[10],
the barrier waiting time increases logarithmically
proportionally to the number of processors. The
topology-barrier is built based on the topology
among processors[12]. This barrier needs the
adjustable data structures to manage neighbor

increases,
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processors, and requires a large scale
modification for existing parallel programs.
Markatos{8] also reported that barriers using
the central counter shows better performance
than the tree barrier scheme, since the tree
barrier had a burden to sustain the tree
structures in the multiprogramming environment.
They also reported that as long as processors
used appropriate blocking barriers, and assuming
that the time between barriers was more than
several times larger than the context switching

time, dedicating processors to a program was an
effective scheduling policy.

In the previous works, several studies
reported that the barrier waiting times were
affected by scheduling policies and basic barrier
structures. However, even if the same number of
grains 1s allocated to each processor, the barrier
waiting time can be affected by changes of the
control paths and the cache misses. In this
paper, we used detailed simulation studies to
explore the interaction between the grain size
and barrier waiting time in data parallel
programs.

3. Data Parallel Programs

Though parallelism can be found in various
forms, data parallelism is the most intuitive and
commonplace because target programs of parallel
processing usually comprise large data set. A
grain size determines the basic program segment
chosen for parallel processing. In data parallel
processing, since each data element is subject to
the identical processing, the grain sizes for
parallel processing are determined by dividing
the total data elements by the number of
available processors.

In this paper, benchmark parallel programs
are run under several grain sizes to observe
how the barrier waiting time is affected by the
flow of control paths and by the cache misses
in partitioned grains. The partitioned grains are
allocated to each processor using the static or
dynamic scheduling policy[1,2,3]. The dynamic
scheduling policy performs scheduling activities
to the grains at runtime. As soon as a process
completes the computation of a grain, the
process begins executing the next grain in the
grain queue. The dynamic scheduling improves
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the processor utilization because a program uses
the available processors released by other
processes during its execution. However, it
results in both scheduling overheads to handle
the grain queue and the loss of cache locality.
On the other hand, the static scheduling policy
designates grains to each processor before a
program is executed. Since the grains allocated
to each processor are not changed until the
program finishes, the cache locality of programs
can be fully exploited. We use the static
scheduling policy in this study, since cache
locality is important for achieving good
performance in data parallel programs(3, 4].

The two data parallel programs for this study
are FFT(Fast Fourier Transform) and LU(LU
Decomposition)[5]. These programs show data
parallelism, since they perform identical
operations on all data elements, and thus the
choice of grain sizes is clearly achieved by
dividing the data elements by the multiple
number of processors. In particular, since these
programs do not generate new data elements
dynamically during the execution, they are easy
to evaluate the performance variations according
to the chosen grain sizes. All these programs
are written in C and use the synchronization
and sharing primitives provided by the SGI's
parallel macros package. During parallel
computing, a centralized barrier is used to
synchronize between processors. We assume that
these benchmark programs are run with eight
processes on eight processors. The following
describes the primary data structures, the
computational behavior and the grain sizes of

two data parallel programs chosen.

3.1 Fast Fourier Transform(FFT)

The FFT program we have used here is a
classic iterative Cooley-Tukey algorithm for an
n point; one-dimensional, unordered and radix-2
FFT. This program performs log n iterations of
the most outer loop. Each iteration does n
complex multiplications and additions. Primary
data structures are two one-dimensional arrays
composed of both a source point array and a
result point array.

The Example 1 is the FFT program pseudo
code. The outer loop starting at line 6 is

executed log n times for an n point FFT. In
every iteration of the outer loop, the array R is
updated using the elements that were stored in
the array S. The chunk_size represented in the
line 5 is a unit of work executed once by all
processors. Since we use the static scheduling
policy for the scheduling of grains onto
processors, each processor executes its grain
within a chunk and moves to its grain of the
next chunk. In the line 16, all processors update
R[] by using S[j] and S[k] within their grains,
and also compute the powers of w known as
twiddle factors. The FFT program shows that
the amount of computation of these twiddle
factors is dependent on the relative position of
each grain within the array R. This
characteristic may cause the load imbalance even
if the same number of grains is distributed to
each processor. In the line 19, the traditional
centralized barrier is applied to synchronize

processors in the outermost loop.

Procedure FFT(R, S, n) {

r=log nm

m_fork( P) ; /¢ set multiple processes */
id = processors label;

for(m=0; m < r-1; m++) {
for(i=0,i<n 1,;i++){

1

2

3

4

5. chunk_size = grain_stze XN;
6

7

8 Slil = RIil; /* address exchanging */
9

}
100 i=1id grain_size;
11 for( ; i < n-1 ;i +=chunk_size) {
12: for( ; grain_size; grain_size —-) {
13: /* bgb; by binary rep. of i */
14: J=1(bs. .. bmiObmerbei )
15: k=(bo...builbmibr1);
16: RIN=S1+SIK) X w(bobm-i br-1) 5
17: }
18 )
19: barrier(semaphore, N);
200}
A

Example 1: FFT program

Figure 1 shows an example for our
experiments, we execute FFT on 65536 input
points(1 Mbytes in size). The coarsest grain size
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is 8092 points, which is achieved by dividing a
source point array S by eight processors. Other
grain sizes considered are 4096, 2048, 1024, 512,
128, 64, 32, 16, 8, 4, and 2 points. All grain
sizes balance the loads among all processors,
since the same number of grains is allocated to
each processor. As shown in this figure, arrays
S and R are in turn used as a source point
array or a result point array and the memory
access pattern of this program follows divide

and conquer characteristics.
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Figure 1 Memory access patterns FFT
Program
program

3.2 LU Decomposition(LU).

This program decomposes matrix A as the
product of a lower-triangular matrix L and an
upper-triangular matrix U so that A = L X U.
The Example 2 shows the LU program pseudo
code. The main data structure is a
two-dimensional matrix A being decomposed.
For k varying from 0 to n-1, this program
systematically eliminates the values of the row
k from those of the rows k+1 to n-1 so that the
matrix of coefficients becomes upper-triangular.
The pivot row’s computation executes on the
line 7. We regard this line as a serial code due
to a relatively small amount of its computation.
After a pivot row’s computation, each processor
uses the pivot row to modify all rows owned by
it to the down of the pivot. As computation
proceeds in LU, the pivot row moves to the
down and the number of rows that remain to its

down decreases.

1: Procedure LU(A4, n) {

2t m_fork( P) ;

3¢ id = processors label;

4 for( k = 0, k < n-1; k++) {

5: for( j = k+1; j < n-1; j++) {

6: lock(lock_var);

7: Alkjl=Alk, j1 / Alk, kJ;

8 unlock(lock_var);

9 }

10:  /* N : number of processors used */
111 grain_size=remain_rows/(N X grain_divisor);
12:  chunk_size = grain_size XN ;

130 i = (k + 1) + (idX grain_size);

14: for( ; i < n -1, i += chunk_size) {

15: for( ; grain_size ; grain_size -- )
16: forG =k + 1, j < n-1; j++)
17 Ali, j 1 = Al /1 - Al, kKIxAlk, j);
18}

19:  barrer(semaphore, N);

200}

21}

Example 2: LU program

As a result, the amount of data accessed and
work done per the pivot row decreases. Under
the pure static grain scheduling policy, the
gradual decrease in workloads appears to poor
processor utilization, since the processors
participating in parallel computing are not used
as the computation proceeds. To utilize all
processors the program completes, we
recalculate grain size by dividing the
remaining rows underneath the pivot-row by
both the number of processors and a grain
divisor defined as a 32-bit integer variable.
Thus, the chunk_size on the line 12 is
determined by multiplying the number of
processors by the recalculated grain size. After
reconstructing the chunks, each processor
executes its grain within a chunk and moves to
its grain of the next chunk. These procedures
are shown between the line 11 and 18. In the
line 19, a traditional centralized barrier is used

until
the

to synchronize processors in the outermost loop.
Under our modified static grain scheduling
policy, Figure 2 shows the snapshot of the LU
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program during the parallel processing. Figure
2(a) shows the initial partition of a matrix A
allocated to eight processors before starting the
computation. Figure 2(b) shows that after more
than half of a matrix is computed, only the
remaining rows underneath the pivot row k are
active and they are divided into eight
processors. At this stage, only the lower-right k
X k submatrix of A is computationally active.
As shown in these figures, the number of rows
allocated into each processor is decreased as the

remaining active area shrinks.
Matrix Involve a pivot row

A grain for Py
A grain for P,

A grain for Pg

A grain for P;

A grain for Pg

(a) The initial partition of matrix

(P, denotes the processor labeled i .)

Matrix

Completed areas
L ( Grains for P, ~ Ps)

/—>Involve a pivot row

A grain for Ps

A grain for P7

A grain for Pg

(b) The partition of matrix after more
than half of a matrix is computed

Firure 2: Memory access patterns in LU

Program
program

Since the number of processors is fixed in
our study, the grain divisor value represents the
degree of granularity used in this program. The
grain divisors considered are 1, 2, 3, 4, 5, 6, 7,
8, and 9. Larger grain divisors mean that finer
grain sizes are applied at the remaining rows
underneath the pivot-row. Thus, the finest grain
size is grain divisor 9, and the coarsest grain
size is grain divisor 1. For our experiments we
run the LU program with a 256 X 256

matrix(512 Kbytes in size).

4. Simulation Environment

We assume the shared memory multi
processors system with a shared bus as a
machine chosen for this study. This system is
widely used and commercialized for computing
servers due to its low-cost high computing
power and ease of use. These machines are also
called UMA  (Uniform Memory  Access)
machines, since access to a memory location via
the bus takes the same amount of time
regardless of which processor is performing the
access and what memory location is being
accessed[6)

Cache coherency is maintained
processors through a variety of snooping and
invalidation techniques. The simulated
environment for this machine is described as
follows. The simulation environment consists of
a functional simulator that executes parallel
programs, and an architectural simulator that
models the shared memory multiprocessors. An
efficient program-driven simulator, MINT(Mips

across

INTerpreter)[7] is used as a functional simulator.

The MINT supplies a memory-reference
generator and simulation libraries. The memory
reference generator executes a program on
several processors and sends an event to the
architectural simulator whenever the program
encounters specific operations like memory read,
write or synchronization. The simulation libraries
support the execution of parallel programs using
a shared memory multiprocessors system and
provide a set of primitives to control events
received from the memory reference generator.
We construct an architectural simulator based on
the multiprocessors with a shared bus. Each
processor is assumed to be a RISC processor
with the same cache size and each instruction is
executed in a single cycle except memory
reference.

Table 1: Cache timing parameters

We assume that cache structure is 2-way set
associative and that cache size is 128 Kbytes
with a cache line size of 16 bytes. The
simulated cache coherency protocol is the Illinois
protocol[8]. On current microprocessors, the main
memory access-time is about 80 ns, the clock
rate is 250 Mhz(eg. MIPS  R10000,
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UltraSparc-1I) and the system bus width is 128
bits. Table 1 shows timing values used in the
cache coherency protocol based on these
parameters including 1 address cycle and 1 bus

operation cycle.

5. Performance Evaluation

In this Section, the performances of our
benchmark parallel programs are measured
across a range of grain sizes on the given
simulation environment “and the causes of
performance variations are then analyzed. The
breakdown items in the processor execution time
are composed of the spin-time, barrier-time,
miss-time, and computation-time. The spin-time
is the busy-waiting time due to spin-lock
operations. The barrier-time is the time spent
waiting at the barriers. The miss-time is the
time spent waiting for data to be fetched into
the cache. The computation-time is the time
spent doing useful work.

5.1 FFT program

Figure 3 plots the breakdown of the processor
execution times obtained across a range of grain
sizes. This figure shows that the miss-time
occupies the primary portion of the execution
time. The best performance is observed with the
coarsest grain size, 8192 points, since this grain
size results in less miss-time and less barrier
time than other grain sizes. In particular, when
fine grain sizes are used, the overhead to handle
fine grains incurs higher computation times.

According to our measurements, the barrier
waiting times are affected by the differences of
cache misses in processors, even if the same
amount of work is assigned to each processor.
The barrier times under fine grain sizes are
higher than those at coarse grain sizes, since
using the fine grain sizes raises the possibility
of cache conflict misses due to the address
interference between the grains allocated to the
same processor. Processors that incur few cache
misses reach barriers earlier than other
processors, and thus they result in the increase
in barrier waiting times.
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Figure 3: FFT Performance

5.2 LU program

F Figure 3: FFT Performance o the
processor execution times when the LU program
is run across a range of grain sizes. As
described in the above section, the larger grain
divisors mean the finer grain sizes. The best
performance is from the coarsest grain size, i.e,
grain divisor 1. The miss-time is given much
weight in the processor execution time. The
uniformity in the spin waiting time of Figure 4
comes from the portion of the sequential
component to execute the pivot rows.

The barrier waiting time of the LU program
depends on not only the difference of cache
misses before reaching the barrier but also the
intrinsic load imbalance between processors due
to gradually decreasing workload. In particular,
Figure 4 shows the higher barrier waiting time
in fine grain sizes. The reason is that when
using fine grain sizes, all processors are not
provided with the exactly same number of
grains. Even though the grain divisors mitigate
this phenomenon, this imbalance is unavoidable
due to the characteristic of the static scheduling
policy designating the grains to each processor

Events Penalties
(Operations) (Cycles)
A write on a shared line 3
A cache miss 22

at the compile-time. If some processors are
assigned more number of grains as compared
with other processors, they arrive late at
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barriers. Another reason is that since fine grain
sizes allocate many small grains to each
processor, the address interference between the
grains running on the same processor results in
the difference cache misses in each processor.
For these reasons, the fine grain sizes result in

higher barrier waiting times.
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Figure 4: LU Performance

Figure 4: LU Performance

From the above simulation results, we
observed that varying the barrier waiting times
were highly affected by the difference of the
cache misses incurred by each processor, even if
nearly the same number of grains was allocated
to each processor. Another hidden reason is the
lack of functionality of the traditional barrier
scheme. In the barrier scheme we used, early
arriving processors cannot discover how many
elements are remained uncomputed on the
unarriving processors. If this information is
available, for some parallel programs like our
benchmark programs, the processors reaching
early at a barrier can continue to execute the
next iteration with the partially completed grains

involved in unarriving processors.

6. Conclusion

In this paper, to find the sources of the
barrier waiting time for parallel processing, data
parallel programs were executed on the various
grain sizes, since the grain size affected the
cache misses and the control paths; and they
were assumed to be the primary sources of the
barrier waiting time. The simulation results
showed that even if the same number of grains

was allocated to each processor in our
benchmark programs, the different cache misses
per processor affected the barrier waiting time
more than the variation in the control paths
within in the grains.

Another important issue for barrier waiting
time was from the lack of functionality in the
traditional barrier scheme. The main missing
functionality is that processors reaching barriers
can know the status of other processors,
especially when they can continue to execute the
next iteration with such knowledge. To solve
this problem, the effective synchronization
primitive will be devised in future work.
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