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Abstract
A comparison is made of the temperature distribution and heat loss from a
trapezoidal profile fin using two different 3-dimensional methods. These two
methods are analytical and finite difference methods. In the finite difference
method 78 nodes are used for a fourth of the fin. A trapezoidal profile fin being
the height of the fin tip is half of that of the fin base is chosen arbitrarily as
the model. One of the results shows that the relative error in the total
convection heat loss obtained by using 78 nodes in the finite difference method
as compared to the heat conduction through the fin root obtained by analytic
method seems to be good (ie, -35%<relative error<1.0%) for the following

range ; Bi<0.3, L<2 and 04<w<10.

Keywords : 3-D analytical method, 3-D finite difference method, conduction, convection,

Biot number

1. Introduction

Fins as extended surfaces are widely used to
enhance the rate of heat transfer to a
surrounding fluid in many applications such as
the cooling devices of internal combustion
engines, electronic  equipments and  heat
exchangers, etc.. In the analysis of heat
transfer from the fins, it is traditionally assumed
that the heat flow is one-dimensional (Look,
1995; Look, 1997, Aparecido and Cotta, 1990),
although convenient, may cause error under
certain physical conditions (e.g., when Biot
number is comparatively large or height of the
fins is high). To make more accurate prediction
of the heat flow in the fins for efficient designs,
some papers present multidimensional approach
(Look and Kang, 1992; Kang and Look, 1999;
Manzoor, Ingham and Heggs, 1983; Onur, 1996;
Abrate and Newnham, 1995; Oh, Jo and Cho,
1989) taking into account the transversal
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temperature gradients. Also many kinds of
methods (i.e., the analytical method (Look, 1995;
Look, 1997; Aparecido and Cotta, 1990; Look and
Kang, 1992; Onur, 1996), the heat balance
integral method (Oh, Jo and Cho, 1989), the
finite difference method (Kang and Look, 1999),
the finite element method (Abrate and
Newnham, 1995), and the boundary integral
equation method (Manzoor, Ingham and Heggs,
1983)) have been used to analyze the heat
transfer problem. But no literature seems to be
available which presents the comparison of two
different three- dimensional analysis on the heat
transfer problem.

In this study, by wusing two different
three-dimensional methods (i.e., the analytical
method and the finite difference method), the
convection heat loss at the each surface, the
total heat loss from the fin and the temperature
distribution are studied in the specific trapezoidal
profile fin (i.e, the height of the fin tip is one
half of that of the fin base) and then the
comparisons of the results obtained using these
two methods are presented with respect to the
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non-dimensional fin length, width and Biot
number to establish the range of the validity of
both methods in this study. TFor simplicity, the
base temperature, the heat transfer coefficient
and the thermal conductivity of the fin material
are assumed constant and the condition is

assumed to be steady-state.

2. Three-Dimensional Analysis

2.1 Analytical Method

Consider a  three-dimensional trapezoidal
profile fin geometry being the height of the fin
tip is one half of that of the fin base as shown

in Fig. 1.

Fig. 1 Geometry of a trapezoidal fin.

Three-dimensional differential

equation under steady state for this figure is

governing

L+ S5+ 25 =0 m

Five boundary conditions and one energy
balance equation are required to solve the Eq.
(1). These conditions are shown as Egs. (2)~

(7
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O0=(T=Tud(Ty=Tu) , x=-3-, y=L,

L

, L=-L ana Bi=-&L

2= e W bl
I ] k

The solution for the temperature distribution
O(x,y,2) within the fin obtained with Egs. (
2)~(5) is
0(x,-yyz) = "El mz=1Nnm ) f(x)
© o5 (A ¥ cos(u,-2) (8)

where

4sinA,,
Nom = sin(21.)
4sin(p, - w)

21, wtsin(2u, + w)

9

Ax)=cosh{Oum* %) = Fom * SInh (04 + %) (10)

Onm - tanh(po,,, « L)+ Bi

f"m = Oum+ Bi- tanh(pnm ° L) an
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Pum =V (At u,0) (12)

The eigenvalues #,, in Eq. (8 can be

obtained from Eaq. (13) which comes from Eq.
(6).

e tan(u, - w) = Bi (13)

Substituting #, into Eq. (14) transformed
from energy balance equation (7) yields another

eigenvalues A,, .

1
4L*

(0%t A sin(s, + )+ P

A
: [sin/l,,, - AA,,—Bi- sin(—z’l)]
+Bic Ayttt cos(p, - w)

L, o Amy
{20""‘ cos ( 9 ) CC,,

t3F sin ( 2) Oum * Am * DDy

—p . . L.
Onm AAnm EEnm 2L BBnm

—B;. 1
(FFum+ GG} — Bi \/1+ K

(A2 1
(pnm+ 4L2

* {AAmn * Onm* COS/{m_HHnm

A2+ A sin(p, -+ w)
+-L .BB,, - A, sini, }=0 (14)

2L

where

AAnm= Onm * Sinh(pnm * L)
+ Bi - cosh(0,m* L) (15)

BBnm: Poum * COSh(pnm : L)
+ Bi - sinh(p,,, - L) (16)

CCpm=Bi* 0%

2 2
1 . s Onm Am
4L2 Bi /lm L + 4L3

+ 17)

=Ll 2 1 _»_ B
DDnm'— 2 (™ 8L2 Am L a8

1
EE = Oom COS/l,,.+*4F - A2+ cosA,,

L .4, sind, (19)

T ar?

FF = 0% Ay sind,,

1 .3, o
+ VR A5 SInd,, (20)
CGpm=—7 + 2%+ cosA
nm 4L2 m m
~ Pl * COSA,, (21)

. Am
HH,,=Bi* 04" cos(—z-)
. Am
+2—1L O A sm(T) (22)
By applying Eq. (8) to Fourier's law, the heat

loss rate conducted into the fin through the fin

base is given by

Qk=4k'l'60§ anm'pnm'fnm

1 m=1

sind,,  sin{yg, - w)

(23)

where

The heat loss conducted into the fin through
the fin base should be equal to total convection
heat loss from the each surface. The convection
heat loss from the each surface (i.e., fin tip,
both sides and top & bottom) is obtained using
Newton’s law of cooling and the equations for
the heat loss from each surface are shown as

Eq. (24) through Eq. (26).

Qnrip_ _ i iNnm'pnm' Bi

k'l n=1 m=] AQ pm
sin( A"’) :
o sl ) (24)
m #71
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L. P Amy 1 Am
[2 B [°°S( 20717 B
A
Am . Am ddym Am
{T . sm(“é‘ ~ b, COS(—Q‘)} " €Cm
1 1 COSAm .
2 bbm”Z ( L fnm Oonm
. ) -
A sind,,) — b, (25)
Qi _ & 1
Pl = 2 2B 1
Nom _sin(e, - w) [ﬁ -
b6 7 2L "~ SMm
+ffnm * Slnh(pnm * L)_ &8 nm * COSh(pnm * L)
= fam* Ouwm* COSA,) (26)
where
Ay = Omm * COSh (0, * L)
+ Bi - sinh(po,, - L) (27
2 A
bbnm - pnm+ 4L2 (28)

CCom = sinh (0, * L) + fom - cosh(p,, + L) (29)

/12

(30)
€ = COSh(0pn * L)+ fm * sinh(o,,, * L) (31)

Sfam= Oum * COS(%)

_fnm * %ZT ° Sln(_g—m) (32)
Am

88w =51 -sin(—'{zﬂ)—p,.m' cos(—'ié'l) (33

Am .
Phom = fum* Oum* COSAn— 57 - sindy, (34)
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The total convection heat loss from the fin
can be calculated using Eq. (35).

Qr= Qniipt Qasst Qs (39)
2.2 Finite Difference Method

For this finite difference method, fin length,
height and width are divided into respectively 4,
16 and 4 by uniform distances along the x, y, z
direction, where these uniform distances are
dx, dy and dz.

fourth of the fin is located as illustrated in Fig.

Accordingly 78 nodes in a

(=== =K~)

© oo

Fig. 2 A fourth trapezoidal profile fin
geometry showing the 78 nodes in
the finite difference method.

Seventy  eight equations are  solved
simultaneously to obtain the value of the
temperature at each node. Examples of the

equations used are given by Egs. (36)~(53).

For node 1 (and a similar form for the points
9, 16)

1-C-6,+2A-60,+ 605+2B-0n,=0 (36)

For node 2 (and a similar form for the points
3-7, 10-14, 17-20)

1+A'0[‘C'02+A'03+010
+2B- 0x3=10 (37
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For node 8 (and a similar form for the points
15, 21)

1+A-6;,—F-63+B-03=0 - (38)
For node 22

0—D-0p+A-03+B-05=0 (39)

For node 23 (and a similar form for the points
24-25)

bn+ LA 0n-D 05+ LA 0y

+B'04g=0 (40)

For node 26

O + —%A~025—E-49%+ %3‘052=0 1)

For node 27 (and a similar form for the points
35, 42)

1+B'01—C'0m+2A'623+035
+B05;=0 (42)

For node 28 (and a similar form for the points
29-33, 36-40, 43-46)

1+B'02+A'027‘C’028+A'629
+033+B'054=0 (43)

For node 34 (and a similar form for the points
41, 47)

l+—%B-08+A-633—F-4934

+—§B-eﬁo=o (44)

For node 48

—§B~022+ Bp—D- O+ A Oy

+_%B'674=0 (45)

For node 49 (and a similar form for the points
50, 51)

—éB-ﬁz;+043+—%A-048—D~649
+1la.6,+LBgs=0 *(46)
2 50 2 7% =
For node 52

2B Oyt ost FA 05— E- b

3B 6y=0 "

TR

For node 53 (and a similar form for the points
61, 68)

14 2B 0y —2G- 03+ 2A - 05 + 05 =0 (48)

For node 54 (and a similar form for the points
55-59, 62-66, 69-72)

1+ZB'028+A'053_2G'054
+A'055+052=0 (49)

For node 60 (and a similar form for the points
67, 73)

1+B'034+A'059—R'050=0 (50)
For node 74

B.048+068_H'074+A'075=0 (51)

For node 75 (and a similar form for the points
76, 71)

B O+ 069+—%A-074—H-075

+%A-6’76=0 (52)
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For node 78

BB ot Ot LA -Op—P O=0 3

4 2

where
A=(—f,—§)z (54)
B=(—2’§)Z (55)
C=2(1+A+B) (56)
D=1+Bi-dx+A+B (57)
E =1+ (1+VA+]) Bi- 4%

++a+dp 9

F=1+Bi-d-VA+1+A+B (59
G=1+Bi-42-B+A+B (60)

H=1+Bi dc+B-(Bi-dz+1)+A (6D

P=1+<1Bi-dx-Q+VAFL)

2
+%B-(1+Bi~dz)+—§A (62)

Q =1+Bi-dc-VAFI
+B-(Bi-dz+1)+ A (63)

The convection heat loss from the each

surface can be calculated using Egs. (64)~(66).

Q.
k-l

=AA-{1+21:0,~

+—§§‘_,e,+%§ek} (64)

Qe _ pp. (L +L S0+,

o O+ % brs ) 65)
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Qi 1 1

_xtp )L 1

5% = BB { T 20+ ;0,,+Z«9,} (66)
where,

AA =46y Bi- 4z - 2+ 4"

BB =46y -Bi- dy- 4z

i = 34,41, 47

i =8 15, 21, 52, 60, 67, 73

k=2 78

! = 53, 60, 61, 67, 68, 73, 75, 76, 77

m = 54, 55, 56, 57, 58, 59, 62, 63, 64, 65,

66, 69, 70, 71, 72
p =22 26 74 78

g = 23,24, 25, 48, 52, 75, 76, 77
7 = 49, 50, 51

The total convection heat loss Qg using the

finite difference method can be obtained by
adding convection heat loss from each surface.

3. Results and Discussions

Fig. 3(a) presents the relative error in the
convection heat loss from each surface of the
trapezoidal profile fin using the finite difference
method as compared to the analytical method as
a function of fin width for L=2 and Bi=0.01. It
is shown that the relative error decreases as w
increases at the tip while it varies from the
positive value to the negative value for both
sides. And the relative error for top & bottom
almost seems to be independent on the fin
width. But the relative errors for each surface
are all very small and these are within the
range from -0.30% to 0.62%. The same
description but for Bi=0.1 case is shown in Fig.
3(b). As expected, on the whole, the relative
errors in case of Bi=0.1 are larger than those for
Bi=0.01. But the variation trends are similar for
both Biot numbers. It must be noted that even
though the relative error at each surface is
large, the total relative error becomes small. For
example, in case of w=2, Bi=0.1, the relative
error at the tip is 3.2% and that at the both
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sides is -4.2% but the total relative error
becomes 0.6% and it will be shown later in Fig.
6.

Figs 4(a), (b) also show the same sort of
comparison as presented in Figs 3(a), (b), but as
a function of L, for w=04. First the variation

’: Each Surtace (i}
3 0.80f-
~ I Rt i=tip
S os0|- — =
\ L e - - -~ i=bs
X o4l e
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(b} Bi=0.1.
Fig. 3 The relative error in the heat loss

from each surface using the finite
difference method to the analytical
method as a function of w for L=2.

of the relative error for Bi=0.01 is shown in Fig.
4(a). In this case, the relative errors for each
surface increase constantly as L increases.

Results for the same condition as in Fig. 4(a)
except that Biot number is 0.1 are depicted in
Fig. 4(). In contrast the former case, the
variation of the relative error is somewhat
irregular. In other words the error varies from
the positive value to the negative value for top

35}

3.0} Each Surface (i)

251

2.01- ---- i=bs

1.5}
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>
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=
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(b) Bi=0.1.

Fig. 4 The relative error in the heat loss
from each surface using the finite
difference method to the analytical
method as a function of L for
w=04.

& bottom and that for both sides increases
negatively while the error for the fin tip
increases first and then decreases slightly.
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Fig. 5 presents the relative error in the total
convection heat loss from all the surfaces as
compared to the heat loss conducted into the fin
through the fin base as a function of Biot
number for w=0.4 and 1.0 in case of L=2. This

—~ 05
2
Z oo :
S 05} RN
x -1.0[- RN
~ B . B ~
g s Analysis method (i) & Width | "\
g '
—~ 20 i=h(w=1.0) :
(-:’ 25l | i=h (w=0.4)
x e e = =1 AN
Ie] 30l i=F(w=1.0)
-~ — i=F (w=0.4)

-35|-,

| : ! . ! . | . I . 1

0.00 0.05 0.10 0.5 0.20 0.25 0.30
Bi

Fig. 5 The relative error in the total
heat loss by convection as
compared to by conduction as a
function of Biot number for L=2.

15/
el - _‘,:..—..w—--:--.'-:“_“_"
0.5} -

0.0} ’

0.5 :
1.0 Biot Number

45l : — o001
-2.0[-
25(
30| |
3.5

(Qx -Qe)/Qk X100 (%)

Fig. 6 The relative error in the total
convection heat loss using a
finite difference method as
compared to the heat conduction
using the analytical method as a
function of w for L=2.
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figure shows that the errors for i=h increase
while those for i=F vary from positive value to
negative value as Biot number increases. In

Table 1 Relative error in the temperature
along the center line of the fin top
surface for L=2, w=0.4.

Biot\ ¢ | x 4 e (%)
No. AM | FDM

0.01| 0.875 | 0.5 [0.97346810.973583 | -0.012
0.750 | 1.0 ] 0.953201 | 0.950919 0.239
0.625 | 1.5 | 0.939295 | 0.934263 0.536
0.500 | 2.0 | 0.931636 | 0.925253 0.685

0.1 | 0.875} 0.5|0.811932|0.814593| -0.328
0.750 | 1.0 | 0.679388 [ 0.672696 0.985
0.625 | 1.5 | 0.593437 | 0.575548 3.014
0.500 | 2.0 | 0.547968 | 0.525102 4.173

* Note : e={(0,—0r)/0,)x100 (%)

case of i=h, the relative error for w=1.0 is larger
than that for w=04. On the other hand, for i=F,
the relative error with respect to width varies
somewhat irregularly.

Fig. 6 illustrates the relative errors in the
total convection heat loss using a finite
difference method as compared to the heat
conducted into the fin through the fin base
using the analytical method as a function of w
for Bi=0.01, 0.1 and 0.3 in case of L=2. The
relative error is near about 0.14% for Bi=0.01
regardless of the increment of w. This figure
also shows that the relative error increases from
approximately 0.05% to 1.1% as w increases
from 0.4 to 10 for Bi=0.1. The relative error for
Bi=0.3 has negative value at w=04 and it is
rapidly reduced to zero and then increases
slowly as w increases. Most notable in this
figure is that the relative errors are within about
+1% for over w=2. This fact explains the
effect of the number of division along the width
on the relative error is very small. It seems
probably due to the fact that the base
temperature is constant.

Table 1 lists the relative error in the
temperature along the center line of the fin top
surface using a finite difference method as
compared to the analytical method for L=2 and
w=04 with Bi=0.1 and Bi=0.01. This table
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shows the relative error for Bi=0.01 is smaller
than that for Bi=0.1. It also shows that the

relative error increases as X  increases.

0
(%)

rror

oa

_ Relative
in the tem

(b} Bi=0.1
Fig. 7 The relative error in the temperature
distribution on the fin cross section
at the half length x=1 using a finite
difference method as compared to
the analytical method for w=0.4, L=2.

The relative errors in the temperature
distribution for w=04, 1.=2 on the fin cross
section at the half length (ie, x=1) using the
finite difference method as compared to the
analytical method are illustrated in Fig. 7. First,
Fig. 7(a) presents the relative error for Bi=0.01.
This figure shows that the relative error in the
temperature is somewhat small, being the
highest (0.273%) at the center (y=0, z=0), and
the lowest (0.239%) at the edge lines (y=%+0.75).
It also shows the gradient of the error becomes
more steep towards the top and bottom from the
center of the fin while the gradient of the error

along the z direction is almost negligible. The
same condition but for Bi=0.1 is presented in
Fig.  7(b). The  particularly  different
characteristics in Fig. 7(b) as compared with
Fig. 7(a) can be observed in view of two
aspects. One is that the error range is a little
greater and the other is that the slope of the
variation of the error is considerably steep at

the smaller area in the both end lines.

4. Conclusions

The following conclusions can be made from

the results.

1) The relative error in the heat convection
from each surface using the finite difference
method to the analytical method varies
somewhat irregularly and in the overall the
largest relative error occurs at the tip.

2) For given nodes in the finite difference
method the relative error in the total convection
heat loss as compared to heat conduction seems
to be good (e, -35%<RE<1.0%) for the
following region ; Bi<0.3, L<2 and 0.4<w<10.

3) In the view of the non-dimensional
temperature  distribution, the relative error
increases toward fin tip while decreases toward
both sides and top & bottom surfaces.

4) The effect of the number of division along
the width on the relative error is very small
because it probably is due to the assumption

that the base temperature is constant.
Nomenclature

Bi . Biot number, £/ /k

h © heat transfer coefficient [W/m” °C]

k . thermal conductivity [W/m C]

/ : one half fin height at the base [m]

L : fin length (base to tip) [m]

L : non-dimensional fin length, L’/ !

Qr . total convection heat loss from the fin
obtained wusing a finite difference
method (W]

@ rs - convection heat loss from both sides

obtained us'ing a finite difference
method [W]
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loss from top &

bottom  obtained wusing a finite
difference method [W]
: convection heat loss from tip obtained

using a finite difference method [W]

. total convection heat loss from the fin

obtained using the analytical method
(w1

. convection heat loss from both sides

obtained using the analytical method
W]

heat loss from top &

bottom obtained using the analytical
method [W]

. convection heat loss from tip obtained

using the analytical method [W]
the

through the base obtained using the
analytical method [W]

loss conducted into fin

. fin temperature [C]
. fin base temperature [C]
: ambient temperature [C]

. one half fin width [m]

: non-dimensional a

half fin width,

w/l

! length directional variable [m]

length  directional

variable, x'/{

! height directional variable [m]

: non-dimensional  height  directional
variable, y'/!

: width directional variable [m]

. non-dimensional ~ width  directional
variable, 2°//

* increment of x along the length
direction

. increment of y along the height direction

Cincrement of z along the width direction

Greek characters

¢ adjusted temperature, (T,— Tw)

! non-dimensional temperature,

(T—T N Ty— T )

Hyung Suk Kang

Am : eigenvalues (m=1, 2, 3, )

p#, : eigenvalues (n=1, 2, 3, -+ )

om ° eigenvalues ( V A2+ @2 )
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