A Comparative Study of Small Area Estimation Methods

소지역 추정법에 관한 비교연구

  • Park, Jong-Tae (Department of Information Science, Pyongtaek University) ;
  • Lee, Sang-Eun (Department of Applied Information Statistics, Kyonggi University)
  • 박종태 (평택대학교 정보과학과) ;
  • 이상은 (경기대학교 응용정보통계학과)
  • Published : 2001.10.30

Abstract

Usually estimating the means is used for statistical inference. However depending the purpose of survey, sometimes totals will give the better and more meaningful in statistical inference than the means. Here in this study, we dealt with the unemployment population of small areas with using 4 different small area estimation methods: Direct, Synthetic, Composite, Bayes estimation. For all the estimates considered in this study, the average of absolute bias and men square error were obtained in the Monte Carlo Study which was simulated using data from 1998 Economic Active Population Survey in Korea.

직접(direct) 추정법, 합성(synthetic) 추정법, 복합(composite) 추정법, 베이즈(Bayes) 추정법 등 소지역 추정법들의 효율성을 비교, 분석하고자 '98 경제활동 인구조사에서 경기도의 실제 자료를 이용하여 각 시부지역의 실업자수 추정값의 편의(bias)와 평균제곱 오차(MSE)를 모의실험을 통해 계산하였다.

Keywords

References

  1. 통계분석연구 no.창간호 변동계수를 이용한 소지역 통계의 안정성 검토 이상은;진영
  2. Survey Methodlogy v.20 no.2 Empirical comparison of small area estimation methods for the Italian Labour Force Survey Falorsi, P.D.;Falorsi, S.;Russo, A.
  3. Proceeding of the Bureau of the Census Annual Research Conference Hierarchical and empirical multivariate Bayes analysis in small area estimation Ghosh, M.;Datta, G.S.;Fay, R.E.
  4. Journal of the American Statistical Association v.82 Robust empirical Bayes estimation of means form stratified samples Ghosh, M.;Lahiri, P.
  5. Proceedings of the Social Statistics Section Use and evaluation of synthetic Gonzalez, M.E.
  6. Proceedings of the Section on Survey Research Methods Choosing weights for composite estimators for small area statistics Schaible, W.L.