Phosphorus Accumulation and Utilization Efficiency in Soybean Plant under Atmospheric CO2 Enrichment

  • Sa, Tongmin (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Jong-Soo (Department of Environmental Engineering, Sun Moon University)
  • Received : 2000.11.21
  • Published : 2001.03.31

Abstract

Soybean plants(Glycine max [L.] merr.) inoculated with Bradyrhizobium japonicum MN110 were grown in growth chambers under 400 or $800{\mu}l{\cdot}l^{-1}$ atmospheric $CO_2$ and harvested at 25, 28, 32, and 35 DAT to examine the effect of $CO_2$ enrichment on phosphorus accumulation, uptake, and utilization efficiency during vegetative growth. Phosphorus concentration in leaf was lower in high $CO_2$ plant by 47% at 25 DAT and 34% at 35 DAT than those in the control plant but phosphorus concentrations in stem, root and nodule were not affected by $CO_2$ enrichment. Total phosphorus accumulation increased 3.9-fold in high $CO_2$ plant and 3.2-fold in the control plant between 25 and 35 DAT. Elevated $CO_2$ caused a decrease in the whole plant phosphorus concentration by 35%, which was due almost entirely to a decrease in the phosphorus concentration of leaves. $CO_2$ enrichment increased phosphorus utilization efficiency in the whole plant by 70% during the experimental period. Plants exposed to high $CO_2$ had larger root systems than under ambient $CO_2$, but high $CO_2$ plants had lower P-uptake efficiency. Averaged over four harvests, plants at high $CO_2$ had 38% larger root mass that was more than offset the 20% lower efficiency of P-uptake and accounted for increased phosphorus accumulation by high $CO_2$ plant. These results suggest that the reduced phosphorus concentration in soybean plant under $CO_2$ enrichment may be an acclimation response to high $CO_2$ concentration or enhanced starch accumulation, resulting in the plants to have a lower phosphorus requirement on a unit dry weight basis or a high phosphorus utilization efficiency under these conditions.

Keywords