Oxidative Stress in Rice (Oryza sativa L.) Seedlings Induced by Flooding

  • Lee, Keun Pyo (School of Agricultural Biotechnology, Seoul National University) ;
  • Jung, Jin (School of Agricultural Biotechnology, Seoul National University)
  • Received : 2001.09.20
  • Published : 2001.12.31

Abstract

Plant stress incurred by flooding was studied in terms of oxidative stress, using greened rice seedlings subjected to a complete submergence followed by re-exposure to air under illumination ($30W/m^2$). It appeared that shoot tissues of the seedlings suffered oxygen deficiency during the flooding treatment, pertinent to the general concept. Interestingly enough, however, membrane peroxidation in shoots was enhanced by the submergence, as assessed by the content of 2-thiobarbituric acid-reactive substances (TBARS), and the re-aeration resulted in a rapid reduction of TBARS content. Such pattern of response was also seen in the change in the steady state level of $H_2O_2$. In contrast, superoxide dismutase and glutathione reductase that are involved in the detoxifying processes of superoxide in plant cells were significantly activated only during the re-aeration. These results allowed us to suggest the followings as a working hypothesis. Photorespiration-linked production of $H_2O_2$ may largely contribute to the increase in $H_2O_2$ level as well as TBARS production in shoots during the submergence. An abrupt re-supply of $CO_2$ by the re-aeration brings the photosynthetic apparatus back to full operation, suppressing photorespiration and probably causing a momentary, excess formation of superoxide and its dismutation product through side reaction, which gives rise to activating substrate-inducible antioxidative enzymes.

Keywords