DOI QR코드

DOI QR Code

Failure analysis of prestressing steel wires

  • Toribio, J. (Department of Materials Engineering, University of Salamanca) ;
  • Valiente, A. (Department of Materials Science, Polytechnic University of Madrid, ETSI Caminos, Ciudad Universitaria)
  • Published : 2001.12.25

Abstract

This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.

Keywords

References

  1. Astiz, M.A. (1986), "An incompatible singular elastic element for two- and three- dimensional crack problems", Int. J. Fracture, 31, 105-124. https://doi.org/10.1007/BF00018917
  2. Astiz, M.A., Elices, M. and Valiente, A. (1986), "Numerical and experimental analysis of cracked cylindrical bars", in Fracture Control of Engineering Structures/ECF 6 (Edited by H.C. van Elst and A. Bakker). EMAS, West Midlands, U.K., 65-74.
  3. Athanassiadis, A., Boissenot, J.M., Brevet, P., Francois, D. and Raharinaivo, A. (1981), "Linear elastic fracture mechanics computations of cracked cylindrical tensioned bodies", Int. J. Fracture, 17, 553-566. https://doi.org/10.1007/BF00681556
  4. Beremin, F.M. (1980), "Influence de la triaxialit des contraintes sur la rupture par dhirement ductile et la rupture fragile par clivage d'un acier doux", Journal de Meoanique Appliqu, 4(3), 327-342.
  5. Boonchukosol, K. and Gasc, C. (1979), "Influence de l'éat de contrainte sur les conditions de rupture des aciers", Journal de Meoanique Appliqu, 3(1), 105-118.
  6. Bui H.D. and Dang Van K. (1979), "Generalisation de la thérie de la rupture de Griffith", J. Manique Appliqu 3(2), 205-225.
  7. CEN (1992), Eurocode 3-1992 ENV 1993-1-1 Design of Steel Structures Part 1.1: General Rules and Rules for Buildings, European Commitee for Standardization, Brussels.
  8. Elices, M. (1985), "Fracture of steels for reinforcing and prestressing concrete", in Fracture Mechanics of Concrete: Structural Application and Numerical Calculation (Edited by G.C. Sih and A. DiTommaso). Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 226-271.
  9. Guillemot, L.F. (1976), "Criterion for crack initiation and spreading", Engng. Fracture Mech., 8, 239-253. https://doi.org/10.1016/0013-7944(76)90089-8
  10. Hancock, J.W. and Brown, D.K. (1983), "On the role of strain and stress state in ductile failure", J. Mech. Phys. Solids, 31, 1-24. https://doi.org/10.1016/0022-5096(83)90017-0
  11. Hancock, J.W. and Mackenzie, A.C. (1976), "On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states", J. Mech. Phys. Solids, 24, 147-169. https://doi.org/10.1016/0022-5096(76)90024-7
  12. Johnson, W. and Mellor, P.B. (1986), Engineering Plasticity, Ellis Horwood Limited, Chichester.
  13. Lewandowski, J.J. and Thompson, A.W. (1986), "Effects of the prior austenite grain size on the ductility of fully pearlitic eutectoid steel", Metall. Trans., 17A, 461-472.
  14. Mackenzie, A.C., Hancock, J.W. and Brown, D.K. (1977), "On the influence of state of stress on ductile failure initiation in high strength steels", Engng. Fracture Mech., 9, 167-188. https://doi.org/10.1016/0013-7944(77)90062-5
  15. Park, Y.J. and Bernstein, I.M. (1979), "The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel", Metall. Trans., 10A, 1653-1664.
  16. Sih, G.C. (1985), "Mechanics and physics of energy density theory", Theor. Appl. Fracture Mech., 4, 157-173. https://doi.org/10.1016/0167-8442(85)90001-1
  17. Toribio, J. (1997), "A fracture criterion for high-strength steel notched bars", Engng. Fracture Mech., 57, 391-404. https://doi.org/10.1016/S0013-7944(97)00027-1
  18. Toribio, J. and Elices, M. (1992), "The role of local strain rate in the hydrogen embrittlement of round-notched samples", Corros. Sci., 33, 1387-1409. https://doi.org/10.1016/0010-938X(92)90179-7
  19. Toribio, J. and Ovejero, E. (1998a), "Microstructure orientation in a pearlitic steel subjected to progressive plastic deformation", J. Mater. Sci. Lett., 17, 1037-1040.
  20. Toribio, J. and Ovejero, E. (1998b), "Effect of cold drawing on microstructure and corrosion performance of highstrength steel", Mech. Time-Dependent Mater., 1, 307-319.
  21. Toribio, J. and Toledano, M. (1999), "A fracture criterion for prestressing steel cracked wires", in Advances in Steel Structures/ICASS'99 (Edited by S.L. Chan and J. G. Teng). Elsevier Science, Oxford, U.K., 947-954.
  22. Toribio, J. and Toledano, M. (2000), "Fatigue and fracture performance of cold drawn wires for prestressed concrete", Constr. Building Mater., 14, 47-53. https://doi.org/10.1016/S0950-0618(00)00003-9
  23. Valiente, A. (1980), "Criterios de fractura para alambres", Ph. D. Thesis, Polytechnic University of Madrid.
  24. Valiente, A., Elices, M. and Toribio, J. (1988), "Tensile strength of prestressing steels under transversal loads", in Failure Analysis. Theory and Practice/ECF7 (Edited by E. Czoboly). EMAS, West Midlands, U.K., 555-557.