DOI QR코드

DOI QR Code

Inelastic displacement-based design approach of R/C building structures in seismic regions

  • Rubinstein, Marcelo (Instituto de Mecanica Aplicada y Estructuras, Universidad Nacional de Rosario) ;
  • Moller, Oscar (Instituto de Mecanica Aplicada y Estructuras, Universidad Nacional de Rosario) ;
  • Giuliano, Alejandro (Instituto Nacional de Prevencion Sismica)
  • Published : 2001.12.25

Abstract

A two-level displacement-based design procedure is developed. To obtain the displacement demands, elastic spectra for occasional earthquakes and inelastic spectra for rare earthquakes are used. Minimum global stiffness and strength to be supplied to the structure are based on specified maximum permissible drift limits and on the condition that the structure responds within the elastic range for occasional earthquakes. The performance of the structure may be assessed by an inelastic push-over analysis to the required displacement and the evaluation of damage indices. The approach is applied to the design of a five-story reinforced concrete coupled wall structure located in the most hazardous seismic region of Argentina. The inelastic dynamic response of the structure subjected to real and artificially generated acceleration time histories is also analyzed. Finally, advantages and limitations of the proposed procedure from the conceptual point of view and practical application are discussed.

Keywords

References

  1. Barbat, A.H., Orosco, L., Hurtado, J.E., and Galindo, M. (1994). "Definicion de la accion sismica", Monografias de Ingenieria Sismica, CIMNE IS-10.
  2. Bertero, R.D. (1996), "Diseno sismorresistente basado en la performance", Memorias X Jornadas Argentinas del Hormigon Pretensado y XV Jornadas Argentinas de Ingenieria Estructural, Tomo I, 252-284.
  3. Clough, R.W. and Penzien, J. (1975), "Dynamics of structures", Mc. Graw Hill Kogakusha, Ltd.
  4. Collins, K.R., Wen, Y.K., and Foutch, D.A. (1996), "Dual - level seismic design: a reliability- based methodology", Earthq. Eng. & Struct. Dyn., 25, 1433-1467. https://doi.org/10.1002/(SICI)1096-9845(199612)25:12<1433::AID-EQE629>3.0.CO;2-M
  5. Fajfar, P., and Vidis, T. (1994), "Consistent inelastic design spectra: Hysteretic and input energy", Earthq. Eng. & Struct. Dyn., 23, 523-537. https://doi.org/10.1002/eqe.4290230505
  6. Fajfar, P., and Gaspersic, P. (1996), "The n2 method for the seismis damage analysis of RC buildings", Earthq. Eng. and Struct. Dyn., 25, 31-46. https://doi.org/10.1002/(SICI)1096-9845(199601)25:1<31::AID-EQE534>3.0.CO;2-V
  7. Fajfar, P., and Krawinkler, H., Editors (1997), "Seismic design methodologies for the next generation of codes", Proc. of the Int. Workshop on Seismic Design Methodologies for the Next Generation of Codes, Bled/Slovenia, 24-27 June.
  8. Filippou, F.C., D'Ambrisi, A., and Issa, A. (1992), "Non-linear static and dynamic analysis of reinforced concrete subassemblages", Earthquake Engineering Research Center, University of California, EERC 92/08, Berkeley.
  9. Giuliano, A.P., Moller, O., and Rubinstein, M. (1996), "Factores de reduccion para porticos de hormigon armado sismorresistente: ductilidad y sobrerresistencia", Memorias X Jornadas Argentinas del Hormigon Pretensado y XV Jornadas Argentinas de Ingenieria Estructural, Tomo I, 285-312.
  10. Giuliano, A.P., Moller, O., and Rubinstein, M. (1997), "Hacia un nuevo reglamento para construcciones sismorresistentes en la Argentina", Diseno y Construccion Sismorresistente de Estructuras de Hormigon Armado y Acero, EIPAC 97. Facultad de Ingenieria, Universidad Nacional de Cuyo.
  11. INPRES-CIRSOC 103 (1991), Instituto Nacional de Prevencion Sismica - Centro de Investigacion de los Reglamentos Nacionales de Seguridad para las Obras Civiles.
  12. INPRES (1995), "Microzonificacion Sismica del Gran Mendoza", Publicacion Tecnica $N^{o}$ 19.
  13. Kowalsky, M.J., Priestley, M.J.N., and Mac Rae, G.A. (1994), "Displacement based design of RC bridges columns", Seminario Internacional "Ultimas Tendencias En El Diseno Sismorresistente", Mendoza Argentina.
  14. Moller, O., Etse, G., and Rubinstein, M. (1997), "Análisis computacional no lineal para porticos sismorresistentes", Mecanica computacional, Vol XVIII; 405-414, AMCA.
  15. Moller, O., Etse, G., Giuliano, A., and Rubinstein, M. (1998), "Computational analysis of non-linear dynamic behavior of reinforced concrete frames", Computational Mechanics: New Trends and Applications (Ed. S.Idelsohn, E.Onate and E.Dvorkin) Part II, Section 5, Title 9, CIMNE - IACM (CD-ROM).
  16. Park, R., and Paulay, T. (1975), "Reinforced concrete structures", John Wiley & Sons.
  17. Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
  18. Paulay, T., and Priestley, M.J.N. (1992), "Seismic design of reinforced concrete and masonry buildings", John Wiley & Sons, Inc.
  19. VISION 2000 (1995), "Performance based seismic engineering of buildings", Structural Engineers Association of California.
  20. Williams, M.S., and Sexsmith, R.G. (1995), "Seismic damage indices for concrete structures: a state of the art review", Earthquake Spectra, 111(2), 319-349.
  21. Zahn, F.A., Park, R., and Priestley, M.N.J. (1986), "Design of reinforced concrete bridges columns for strenght and ductility", Research Report 86-7, Department of Civil Engineering, University of Canterbury, New Zealand.

Cited by

  1. Preliminary design and inelastic assessment of earthquake-resistant structural systems vol.26, pp.3, 2007, https://doi.org/10.12989/sem.2007.26.3.297
  2. An energy-based approach to determine the yield force coefficient of RC frame structures vol.21, pp.1, 2001, https://doi.org/10.12989/eas.2021.21.1.037