References
- Antman, S.S., and Rosenfeld, G. (1978), "Global behavior of buckled states of non-linearly elastic rods", SIAM Review, 20, 513-566. https://doi.org/10.1137/1020069
- Banovec, J. (1986), "Geometric and material nonlinear analysis of planar frames", Ph. D. Thesis (in Slovenian), University of Ljubljana, Slovenia.
- Belytschko, T., Fish, J., and Engelmann, B.E. (1988), "A finite element with embedded localization zone", Comput. Meth. in Appl. Mech. and Eng., 70, 59-89. https://doi.org/10.1016/0045-7825(88)90180-6
- Belytschko, T., and Fish, J. (1989), "Embedded hinge lines for plate elements", Comput. Meth. in Appl. Mech. and Eng., 76, 67-86. https://doi.org/10.1016/0045-7825(89)90141-2
- Bergan, P.G. (1984), "Some aspects of interpolation and integration in nonlinear finite element analysis of reinforced concrete structures", Computer Aided Analysis and Design of Concrete Structures, Part 1, Damjanic' , F. et al., eds., Pineridge Press, Swansea, 301-316.
- Cichon' , C. (1984), "Large displacements in-plane analysis of elastic-plastic frames", Comput. and Struct., 19, 737-745. https://doi.org/10.1016/0045-7949(84)90173-1
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", ASME J. Appl. Mech., 33, 335-340. https://doi.org/10.1115/1.3625046
- Crisfield, M.A. (1991, 1997), Non-linear Finite Element Analysis of Solids and Structures, Volumes 1 and 2, John Wiley Sons, Chichester.
- de Borst, R., Sluys, L.J., Mühlhaus, H.-B., and Pamin, P. (1993), "Fundamental issues in finite element analysis of localization of deformation", Eng. Comput., 10, 99-121. https://doi.org/10.1108/eb023897
- Fujii, F., and Okazawa, S. (1997), "Bypass, homotopy path and local iteration to compute the stability point", Struct. Eng. and Mech., 5, 577-586. https://doi.org/10.12989/sem.1997.5.5.577
- Hohn, F.E. (1973), Elementary Matrix Algebra, 3rd edn., The Macmillan Company, New York.
- Hsiao, K.M., Hou, F.Y., and Spiliopoulos, K.V. (1988), "Large displacement analysis of elasto-plastic frames", Comput. Meth. in Appl. Mech. and Eng., 28, 627-633.
- Hughes, T.J., and Pister, K.S. (1978), "Consistent linearization in mechanics of solids and structures", Comput. and Struct., 8, 391-397. https://doi.org/10.1016/0045-7949(78)90183-9
- Jelenic, G., and Saje, M. (1995), "A kinematically exact space finite strain beam model-Finite element formulation by generalized virtual work principle", Comput. Meth. in Appl. Mech. and Eng., 120, 131-161. https://doi.org/10.1016/0045-7825(94)00056-S
- Ortiz, M., Leroy, Y., and Needleman, A. (1987), "A finite element method for localized failure analysis", Comput. Meth. in Appl. Mech. and Eng., 61, 189-214. https://doi.org/10.1016/0045-7825(87)90004-1
- Planinc, I. (1998), "A quadratically convergent algorithms for the computation of stability points: the application of the determinant of the tangent stiffness matrix", Ph.D. Thesis (in Slovenian), University of Ljubljana, Slovenia.
- Planinc, I., and Saje, M. (1998), "A quadratically convergent algorithm for the computation of stability points: the application of the determinant of the tangent stiffness matrix", Comput. Meth. in Appl. Mech. and Eng., 169, 89-105.
- Reissner, E. (1972), "On one-dimensional finite-strain beam theory: the plane problem", J. Appl. Math. and Physics (ZAMP), 23, 795-804. https://doi.org/10.1007/BF01602645
- Reese, S., and Wriggers, P. (1997), "Material instabilities of an incompressible elastic cube under triaxial tension", Int. J. Solids and Struct., 34, 3433-3454. https://doi.org/10.1016/S0020-7683(96)00205-3
- Saje, M., Planinc, I., Turk, G., and Vratanar, B. (1997), "A kinematically exact finite element formulation of planar elastic-plastic frames", Comput. Meth. in Appl. Mech. and Eng., 144, 125-151. https://doi.org/10.1016/S0045-7825(96)01172-3
- Ting, T.C.T. (1996), "Positive definiteness of anisotropic elastic constants", Mathematics and Mechanics of Solids, 1, 301-314. https://doi.org/10.1177/108128659600100302
- Washizu, K. (1981), Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford.
- Waszczyszyn, Z., Cichon , C., and Radwanska, M. (1994), Stability of Structures by Finite Element Methods, Elsevier Science B. V., Amsterdam.
- Wriggers, P., and Simo, J.C. (1990), "A general procedure for the direct computation of turning and bifurcation points", Int. J. Numer. Meth. in Eng., 30, 155-176. https://doi.org/10.1002/nme.1620300110
- Wriggers, P., Wagner, W., and Miehe, C. (1988), "A quadratically convergent procedure for the calculation of stability points in finite element analysis", Comput. Meth. in Appl. Mech. and Eng., 70, 329-347. https://doi.org/10.1016/0045-7825(88)90024-2
Cited by
- Geometrically and materially non-linear analysis of planar composite structures with an interlayer slip vol.114-115, 2013, https://doi.org/10.1016/j.compstruc.2012.09.012
- Non-linear analysis of two-layer beams with interlayer slip and uplift 2011, https://doi.org/10.1016/j.compstruc.2011.06.007
- The strain-based beam finite elements in multibody dynamics vol.305, pp.1-2, 2007, https://doi.org/10.1016/j.jsv.2007.03.055
- Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum vol.19, pp.5, 2002, https://doi.org/10.1108/02644400210435843
- Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures vol.192, pp.49-50, 2003, https://doi.org/10.1016/j.cma.2003.07.008
- Buckling of layered wood columns vol.38, pp.8-9, 2007, https://doi.org/10.1016/j.advengsoft.2006.08.021
- Strain-based geometrically nonlinear beam formulation for modeling very flexible aircraft vol.48, pp.16-17, 2011, https://doi.org/10.1016/j.ijsolstr.2011.04.012
- Non-linear analysis of two-layer timber beams considering interlayer slip and uplift vol.32, pp.6, 2010, https://doi.org/10.1016/j.engstruct.2010.02.009
- Non-linear finite element analysis of composite planar frames with an interlayer slip vol.82, pp.23-26, 2004, https://doi.org/10.1016/j.compstruc.2004.03.070
- Rotational invariants in finite element formulation of three-dimensional beam theories vol.82, pp.23-26, 2004, https://doi.org/10.1016/j.compstruc.2004.03.069
- The three-dimensional beam theory: Finite element formulation based on curvature vol.81, pp.18-19, 2003, https://doi.org/10.1016/S0045-7949(03)00208-6
- Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode 2 vol.42, pp.21-22, 2005, https://doi.org/10.1016/j.ijsolstr.2005.03.015
- Finite element dynamic analysis of geometrically exact planar beams vol.85, pp.17-18, 2007, https://doi.org/10.1016/j.compstruc.2006.08.081
- Non-linear fire analysis of restrained curved RC beams vol.84, 2015, https://doi.org/10.1016/j.engstruct.2014.11.012
- The effects of different strain contributions on the response of RC beams in fire vol.29, pp.3, 2007, https://doi.org/10.1016/j.engstruct.2006.05.008
- Non-linear fire-resistance analysis of reinforced concrete beams vol.16, pp.6, 2003, https://doi.org/10.12989/sem.2003.16.6.695
- Fire analysis of steel–concrete composite beam with interlayer slip vol.89, pp.1-2, 2011, https://doi.org/10.1016/j.compstruc.2010.09.004
- Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips vol.16, pp.6, 2014, https://doi.org/10.12989/scs.2014.16.6.559
- On materially and geometrically non-linear analysis of reinforced concrete planar frames vol.41, pp.24-25, 2004, https://doi.org/10.1016/j.ijsolstr.2004.06.004
- Semi-analytical buckling analysis of reinforced concrete columns exposed to fire vol.71, 2015, https://doi.org/10.1016/j.firesaf.2014.11.018
- Fire analysis of steel frames with the use of artificial neural networks vol.63, pp.10, 2007, https://doi.org/10.1016/j.jcsr.2007.01.013
- Locking-free two-layer Timoshenko beam element with interlayer slip vol.43, pp.9, 2007, https://doi.org/10.1016/j.finel.2007.03.002
- Fire analysis of timber composite beams with interlayer slip vol.44, pp.5, 2009, https://doi.org/10.1016/j.firesaf.2009.03.007