References
- Chen W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, N.Y.
- Collins, M.P., and Mitchell, D. (1997), Prestressed Concrete Structures, Response Publications, Toronto, Canada.
- Cusson, D., and Paultre, P. (1995), "Stress-strain model for confined high-strength concrete", J. Struct. Eng., ASCE, 121(3), 468-477. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468)
- Karabinis, A.I., and Kiousis, P.D. (1994), "Effects of confinement on concrete columns: Plasticity approach" J. Struct. Eng., ASCE, 120(9), 2747-2767. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:9(2747)
- Liu, J., Foster, S., and Attard, M. (1998), "Behaviour of tied high strength concrete columns loaded in concentric compression", Report No. R-372, The University of South Wales, Sydney, Australia.
- Mander, B., Priestley, M.J.N., and Park, R. (1988), "Observed stress-strain behavior of confined concrete", J. Struct. Eng., ASCE, 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
- Montoya, E. (2000), "Modeling of confined concrete", Master of Applied Science thesis, University of Toronto, Toronto, Canada.
- Popovics, S.A. (1973), "Numerical approach to the complete stress-strain curve of concrete", Cement and Concrete Research, 3(5), 553-599.
- Pramono, E., and Willam, K. (1989), "Fracture energy-based plasticity formulation of plain concrete", J. Eng. Mech., ASCE, 115(6), 1183-1204. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:6(1183)
- Rasvi, S., and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., ASCE, 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
- Scott, B.D., Park, R., and Priestley, M.J.N. (1982), "Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rates", J. American Concrete Institute, 79(1), 13-27.
- Selby, R.G. (1990), Nonlinear finite element analysis of reinforced concrete solids, Master of Applied Science thesis, University of Toronto, Toronto, Canada.
- Selby, R.G., and Vecchio, F.J. (1993), "Three-dimensional constitutive relations for reinforced concrete", Department of Civil Engineering Publication No. 93-02, University of Toronto, Toronto, Canada.
- Selby, R.G., and Vecchio, F.J. (1997), "A constitutive model for analysis of reinforced concrete", Canadian J. Civ. Eng., 24, 460-470. https://doi.org/10.1139/l96-135
- Sheikh, S.A., and Uzumeri, S.M. (1980), "Strength and ductility of tied concrete columns", J. Struct. Div., ASCE, 106(ST5), 1079-1102.
- Vecchio, F.J., and Collins, M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", J. American Concrete Institute, 83(2), 219-231.
- Vecchio, F.J. (1992), "Finite element modeling of concrete expansion and confinement", J. Struct. Eng., ASCE, 118(9) 2390-2406. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2390)
- Xie, J., MacGregor, J.G., and Elwi, A.E. (1996), "Numerical investigation of eccentrically loaded high-strength concrete tied columns", ACI Struct. J., 93(4), 449-461.
Cited by
- Characterization of Yield Surfaces for FRP-Confined Concrete vol.140, pp.12, 2014, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000811
- Tools for forensic analysis of concrete structures vol.1, pp.1, 2004, https://doi.org/10.12989/cac.2004.1.1.001
- Experimental Determination of Cohesion and Internal Friction Angle on Conventional Concretes vol.114, pp.3, 2017, https://doi.org/10.14359/51689676
- Modified Mohr‐Coulomb – Rankine material model for concrete vol.28, pp.7, 2011, https://doi.org/10.1108/02644401111165112
- Experimental determination of Drucker-Prager yield criterion parameters for normal and high strength concretes under triaxial compression vol.112, 2016, https://doi.org/10.1016/j.conbuildmat.2016.02.127
- Ductility and moment redistribution capacity of multi-span T-section concrete beams reinforced with GFRP bars vol.49, 2013, https://doi.org/10.1016/j.conbuildmat.2013.01.014
- Numerical evaluation of the behaviour of steel- and FRP-confined concrete columns using compression field modelling vol.26, pp.11, 2004, https://doi.org/10.1016/j.engstruct.2004.05.009
- Compression Field Modeling of Confined Concrete: Constitutive Models vol.18, pp.4, 2006, https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(510)
- Nonlinear model of reinforced concrete frames retrofitted by in-filled HPFRCC walls vol.30, pp.2, 2001, https://doi.org/10.12989/sem.2008.30.2.211
- Simplified Analytical Model for Interfacial Bond Strength of Deformed Steel Rebars Embedded in Pre-cracked Concrete vol.146, pp.8, 2001, https://doi.org/10.1061/(asce)st.1943-541x.0002687
- An application of confined concrete modeling to three‐dimensional nonlinear finite element analysis: The example of tunnel boring machine lining joints vol.22, pp.2, 2001, https://doi.org/10.1002/suco.201900584
- A numerical study on the plastic rotation capacity of CFRP-confined rectangular RC columns vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.869
- Towards efficient structural and serviceability design of high-strength concrete T-beams vol.174, pp.10, 2021, https://doi.org/10.1680/jstbu.19.00081
- On the Calibration of a Numerical Model for Concrete-to-Concrete Interface vol.14, pp.23, 2021, https://doi.org/10.3390/ma14237204