References
- Anderson, M.S. and William, F.W. (1986), "Natural vibration and buckling of general periodic lattice structures",AIAA J., 24(1), 163-169. https://doi.org/10.2514/3.9237
- Bourgeois, S. (1997), "Modélisation numérique des panneaux structuraux legers", Thesis of University of Aix-MarseilleII-France.
- Brillouin, L. (1953), Wave Propagation in Periodic Structures, Dover, New York.
- Caillerie, D. (1989), "Thin elastic and periodic plates", Math. Meth. in Appl. Sci., 6, 159-191.
- Caillerie, D., Trompette, P. and Verna, P. (1989), "Homogeneization of periodic trusses", Congress IASS, Madrid.
- Castanier, M.P. and Pierre, C. (1995), "Lyapunov exponents and localization phenomena in multi-coupled nearlyperiodic systems", J. Sound and Vibration 183(3), 493-515. https://doi.org/10.1006/jsvi.1995.0267
- Damil, N. and Potier-Ferry, M. (1990), "A new method to compute perturbed bifurcation: Application to thebuckling of imperfect elastic structures", Int. J. of Eng. Sci., 28(9), 943-957. https://doi.org/10.1016/0020-7225(90)90043-I
- Daya, E.M. (1994), "Vibration et stabilite des longues structures flexibles a forme repetitive", Thesis of Universityof Metz-France.
- Faulkner, M.G. and Hongo, D.P. (1985), "Free vibrations of a mono-coupled periodic system", J. Sound andVibration, 99(1), 29-42. https://doi.org/10.1016/0022-460X(85)90443-2
- Flotow, A.H. von (1986), "Disturbance propagation in structural networks", J. Sound and Vibration, 106(3), 99-118.
- John, O.W., Su, Z.W. and Feng, C.C. (1985), "Equivalent continuum representation of structures composed ofrepeated elements", AIAA J. 23(10), 1564-1569. https://doi.org/10.2514/3.9124
- Jordan, D.W. and Smith, P. (1987), "Non-linear ordinary differential equations", 2nd edn., Clarendon Press, Oxford.
- Lee, S.Y. and Ke, H.Y. (1992), "Flexural wave propagation in an elastic beam with periodic structure", J. Appl.Mech., 57, 779-783.
- Lin, Y.L. (1962), "Free vibration of continous beam on elastic supports", Int. J. Mech. Sci., 4, 409-423. https://doi.org/10.1016/S0020-7403(62)80027-7
- Lin, Y.L. and McDaniel, T.J. (1969), "Dynamics of Beam-type periodic structures", J. Eng. Industry, Nov, 1133-1141.
- McDaniel, T.J. and Chang, K.J. (1980), "Dynamics of rotationnally periodic large space structures", J. Soundand Vibration, 66, 351-368.
- Mead, D.J. (1970), "Free wave propagation in periodically support infinite beam", J. Sound and Vibration, 11(2),81-197.
- Moreau, G. (1996), Thesis of university of Grenoble-France. Homogeneisation de structures discretes en elasticite eten incremental. Application aux modelisations continues lineaires et non-lineaires de treillis quasi-periodiques.
- Noor, A.K. (1988), "Continuum modeling for repetitive lattice structures", Appl. Mech. Rev., 41(7), 285-296. https://doi.org/10.1115/1.3151907
- Noor, A.K. and Andersen, C.M. (1979), "Analysis of beamlike lattice trusses", Comput. Meth. Appl. Mech. andEng., 20, 53-70. https://doi.org/10.1016/0045-7825(79)90058-6
- Noor, A.K. and Anderson, M.S. (1970), "Continuum models for beam and plate-like lattice structures", AmericanInst. of Aeronaut. and Astronaut. J. 16, 1219-1228.
- Noor, A.K. and Nemeth, M.P. (1980), "Analysis of spatial beamlike lattices with rigid joints", Computer. Meth.Appl. Mech. and Eng., 24, 35-59. https://doi.org/10.1016/0045-7825(80)90039-0
- Sanchez Hubert, J. and Sanchez Palencia, E. (1989), Vibrating and Coupling Continuous Systems, Asymptotic. methods, Springer-Verlag, Berlin.
- Sen Gupta, G. (1970), "Natural flexural waves and the normal modes of periodically-supported beams andplates", J. Sound and Vibration 13(1), 89-101. https://doi.org/10.1016/S0022-460X(70)80082-7
- Touratier, M. (1986), "Floquet waves in a body with slender periodic structure", Wave Motion, 8, 485-495. https://doi.org/10.1016/0165-2125(86)90032-6
- Von Flotow, A.H. (1986), "Disturbance propagation in structural networks", J. Sound and Vibration, 106(3), 433-450. https://doi.org/10.1016/0022-460X(86)90190-2
- Wesfreid, J.E. and Zaleski, S. (1984), "Cellular structures in instability problems", Lecture Notes in Physics,Spring, Berlin.
- William, F.W. (1986), "Exact eigenvalue calculations for structures with rotationally periodic substructures", Int.J. Numer. Meth. Eng., 24(4), 695-706.
- Young, Y. and Lin, Y.L. (1989), "Propagation of decaying waves in periodic and piecewise periodic structures offinite length", J. Sound and Vibration, 129(2), 99-118. https://doi.org/10.1016/0022-460X(89)90538-5
Cited by
- Modelisation of modulated vibration modes of repetitive structures vol.168, pp.1-2, 2004, https://doi.org/10.1016/j.cam.2003.07.001
- Continuum modeling for the modulated vibration modes of large repetitive structures vol.330, pp.5, 2002, https://doi.org/10.1016/S1631-0721(02)01464-X
- Evaluation of continuous modelings for the modulated vibration modes of long repetitive structures vol.44, pp.21, 2007, https://doi.org/10.1016/j.ijsolstr.2007.03.023
- A two scale method for modulated vibration modes of large, nearly repetitive, structures vol.331, pp.6, 2003, https://doi.org/10.1016/S1631-0721(03)00093-7
- Influence of geometric and physical nonlinearities on the internal resonances of a finite continuous rod with a microstructure vol.386, 2017, https://doi.org/10.1016/j.jsv.2016.09.025
- Elastic waves in periodically heterogeneous two-dimensional media: locally periodic and anti-periodic modes vol.474, pp.2215, 2018, https://doi.org/10.1098/rspa.2017.0908
- Composite dynamic models for periodically heterogeneous media pp.1741-3028, 2018, https://doi.org/10.1177/1081286518776704