References
- Adan, N., Sheinman, I., and Altus, E. (1994), "Post-buckling behaviour of beams under contact constraints",ASME J. Appl. Mech., 61, 764-772. https://doi.org/10.1115/1.2901552
- Alves, R.V. (1995), "Non-linear elastic instability of space frames", D.Sc. Thesis, COPPE - Federal University ofRio de Janeiro (in Portuguese).
- Ascione, L., and Grimaldi, A. (1984), "Unilateral contact between a plate and an elastic foundation", Meccanica,19, 223-233. https://doi.org/10.1007/BF01743736
- Batoz, J.L., and Dhatt, G. (1979), "Incremental displacement algorithms for nonlinear problems", Int. J. Numer.Meth. Eng., 14, 1262-1267. https://doi.org/10.1002/nme.1620140811
- Belytschko, T., and Neal, M.O. (1991), "Contact-impact by the pinball algorithm with penalty and Lagrangianmethods", Int. J. Numer. Meth. Eng., 31, 547-572. https://doi.org/10.1002/nme.1620310309
- Björkman, C.G., Klarbring, A., Sjödin, B., Larsson, T., and Rönnqvist, M. (1995), "Sequential quadraticprogramming for non-linear elastic contact problems", Int. J. Numer. Meth. Eng., 38, 137-165. https://doi.org/10.1002/nme.1620380109
- Chan, S.L. (1988), "Geometric and material nonlinear analysis of beam-columns and frames using the minimumresidual displacement method", Int. J. Numer. Meth. Eng., 26, 2657-2669. https://doi.org/10.1002/nme.1620261206
- Crisfield, M.A. (1991), Non-Linear Finite Element Analysis of Solids and Structures, 1, John Wiley & Sons.
- Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures, 2, John Wiley & Sons.
- Endo, T., Oden, J.T., Becker, E.B., and Miller, T. (1984), "A numerical analysis of contact and limit-pointbehavior in a class of problems of finite elastic deformation", Comput. & Struct., 18(5), 899-910. https://doi.org/10.1016/0045-7949(84)90035-X
- Gierlinski, J.T., and Graves Smith, T.R. (1985), "A variable load iteration procedure for thin-walled structures",Comput. & Struct., 21, 1085-1094. https://doi.org/10.1016/0045-7949(85)90221-4
- Givoli, D., and Doukhovni, I. (1996), "Finite element-quadratic programming approach for contact problemswith geometrical nonlinearity", Comput. & Struct., 61(1), 31-41. https://doi.org/10.1016/0045-7949(96)00012-0
- Holmes, P., Domokos, G., Schmitt, J., and Szberenyi, I. (1999), "Constraint Euler buckling: An interplay of computation and analysis", Comput. Meth. Appl. Mech. Eng., 170, 175-207. https://doi.org/10.1016/S0045-7825(98)00194-7
- Joo, J.W., and Kwak, B.M. (1986), "Analysis and applications of elasto-plastic contact problems consideringlarge deformation", Comput. & Struct., 24(6), 953-961. https://doi.org/10.1016/0045-7949(86)90304-4
- Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., ASME, 31, 491-498. https://doi.org/10.1115/1.3629667
- Klarbring, A. (1986), "A mathematical programming approach to three-dimensional contact problems withfriction", Comput. Meth. Appl. Mech. Eng., 58, 175-200. https://doi.org/10.1016/0045-7825(86)90095-2
- Koo, J.S., and Kwak, B.M. (1995), "Post-buckling analysis of nonfrictional contact problems using linearcomplementarity formulation", Comput. & Struct., 57(5), 783-794. https://doi.org/10.1016/0045-7949(95)00077-T
- Koo, J.S., and Kwak, B.M. (1996), "Post-buckling analysis with frictional contacts combining complementarityrelations and an arc-length method", Int. J. Numer. Meth. Eng., 39, 1161-1180. https://doi.org/10.1002/(SICI)1097-0207(19960415)39:7<1161::AID-NME898>3.0.CO;2-2
- Lemke, C.E. (1968), "On complementary pivot theory", Mathematics of Decision Sciences, Dantzig, G.B. andYenott, A.F., eds., 95-114.
- Luenberger, D.G. (1973), Introduction to Linear and Nonlinear Programming, Addison-Wesley PublishingCompany, Inc.
- Mottershead, J.E., Pascoe, S.K., and English, R.G. (1992), "A general finite element approach for contact stressanalysis", Int. J. Numer. Meth. Eng., 33, 765-779. https://doi.org/10.1002/nme.1620330407
- Nour-Omid, B., and Wriggers, P. (1986), "A two-level iteration method for solution of contact problems",Comput. Meth. Appl. Mech. and Eng., (54), 131-144.
- Pian, T.H.H., Balmer, H., and Bucciarelli, L.L. (1967), "Dynamic buckling of a circular ring constrained in arigid circular surface", Dynamic Stability of Structures, Pergamon Press, Oxford, 285-297.
- Silva, A.R.D., Silveira R.A.M., and Gonçalves P.B. (2001), "Numerical methods for analysis of plates ontensionless elastic foundations", Int. J. Solids and Structures, 38(10-13), 2083-2100. https://doi.org/10.1016/S0020-7683(00)00154-2
- Silveira, R.A.M. (1995), "Analysis of slender structural elements under unilateral contact constraints", D.Sc.Thesis, Catholic University, PUC-Rio (in Portuguese).
- Silveira, R.A.M., and Gonçalves, P.B. (2000), "A modal solution for the nonlinear analysis of arches and beamsunder contact constraints", Proc. of Int. Conf. on Computational Engineering & Sciences (ICES2K), S.N.Atluri and F.W. Brust, eds., Tech Science Press, Los Angeles, USA, 1822-1827.
- Simo, J.C., Wriggers, P., Schweizerhof, K.H., and Taylor, R.L. (1986), "Finite deformation post-buckling analysisinvolving inelasticity and contact constraints", Int. J. Numer. Meth. Eng., 23, 779-800. https://doi.org/10.1002/nme.1620230504
- Stein, E., and Wriggers, P. (1984), "Stability of rods with unilateral constraints, a finite element solution",Comput. & Struct., 19, 205-211. https://doi.org/10.1016/0045-7949(84)90220-7
- Sun, S.M., and Natori, M.C. (1996), "Numerical solution of large deformation problems involving stability andunilateral constraints", Comput. & Struct., 58(6), 1245-1260. https://doi.org/10.1016/0045-7949(95)00081-X
- Wriggers, P., and Imhof, M. (1993), "On the treatment of nonlinear unilateral contact problems", Archive ofAppl. Mech., 63, 116-129. https://doi.org/10.1007/BF00788917
Cited by
- Nonlinear analysis of structural elements under unilateral contact constraints by a Ritz type approach vol.45, pp.9, 2008, https://doi.org/10.1016/j.ijsolstr.2007.12.012
- A numerical approach for equilibrium and stability analysis of slender arches and rings under contact constraints vol.50, pp.1, 2013, https://doi.org/10.1016/j.ijsolstr.2012.09.015
- Constrained and Unconstrained Optimization Formulations for Structural Elements in Unilateral Contact with an Elastic Foundation vol.2008, 2008, https://doi.org/10.1155/2008/786520
- The constrained buckling problem of geometrically imperfect beams: a mathematical approach for the determination of the critical instability points vol.50, pp.5, 2015, https://doi.org/10.1007/s11012-014-0087-7
- Postbuckling Analysis of Plates Resting on a Tensionless Elastic Foundation vol.129, pp.4, 2003, https://doi.org/10.1061/(ASCE)0733-9399(2003)129:4(438)