References
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Englewood Cliffs.
- Bendat, J.S., and Piersol A.G. (1971), Random Data: Analysis and Measurement Procedures, Wiley.
- Beran, M.J. (1974), "Application of statistical theories for the determination of thermal, electrical and magnetic properties of heterogeneous materials", Mech. of Composite Materials, Broutman, L.J. et al., eds., Academic Press.
- Boswell, M.T. et al. (1991), "The art of computer generation of random variables", C.R. Rao, ed., Handbook of Statistics, Computational Statistics, Elsevier, 9, 662-721.
- Choi, C.K., and Noh, H.C. (1996), "Stochastic finite element analysis of plate structures by weighted integral method", Struct. Eng. and Mech., An Int. J., 4(6), 703-715. https://doi.org/10.12989/sem.1996.4.6.703
- Christensen, R.M. (1979), Mechanics of Composite Materials, Wiley-Interscience.
- Elishakoff, I., Ren, Y.J., and Shinozuka, M. (1995), "Improved finite element method for stochastic problems", Chaos, Solitons and Fractals, 5(5), 833-846. https://doi.org/10.1016/0960-0779(94)00157-L
- Furma ski, P. (1997), "Heat conduction in composites: Homogenization and macroscopic behavior", Appl. Mech. Review, 50(6), 327-355. https://doi.org/10.1115/1.3101714
- Ghanem, R.G., and Spanos, P.D. (1997), "Spectral techniques for stochastic finite elements", Arch. of Comput. Method in Eng., 4(1), 63-100. https://doi.org/10.1007/BF02818931
- Hammersley, J.M., and Handscomb, D.C. (1964), Monte Carlo Methods, Wiley.
- Hien, T.D. and Kleiber, M. (1997), "Stochastic finite element modeling in linear transient heat transfer", Comput. Method in Appl. Mech. and Eng., 144, 111-124. https://doi.org/10.1016/S0045-7825(96)01168-1
- Hurtado, J.E. and Barbat, A.H. (1998), "Monte Carlo techniques in computational stochastic mechanics", Arch. of Comput. Method in Eng., 5(1), 3-30. https://doi.org/10.1007/BF02736747
- Kami ski, M. (1996), "Homogenization in elastic random media", Computer Assisted Mech. and Eng. Sci., 3(1), 9-22.
- Kami ski, M. (1999), "Monte-Carlo simulation of effective conductivity for fiber composites", Int. Communications in Heat and Mass Transfer, 26(6), 801-810. https://doi.org/10.1016/S0735-1933(99)00068-8
- Kaminski, M., and Kleiber, M. (1996), "Stochastic structural interface defects in fiber composites", Int. J. of Solids and Struct., 33(20-22), 3035-3056. https://doi.org/10.1016/0020-7683(95)00264-2
- Kaminski, M., and Kleiber, M. (2000), "Perturbation based stochastic finite element method for homogenization of two-phase elastic composites", Comput. & Struct., 78(6), 811-826. https://doi.org/10.1016/S0045-7949(00)00116-4
- Kleiber, M., and Hien, T.D. (1992), The Stochastic Finite Element Method, Wiley.
- Krishnamoorthy, C.S. (1994), Finite Element Analysis, McGraw-Hill.
- Pepper, D.W., and Heinrich, J.C. (1992), "The finite element method", Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Hemisphere Publ. Comp.
- Rao, H.S. et al. (1997), "A model of heat transfer in brake pads by mathematical homogenization", Sci. and Eng. of Compos. Mater, 6(4), 219-224.
- Sab, K. (1992), "On the homogenization and the simulation of random materials", Eur. J. of Mech. A-Solids, 11, 585-607.
- Sanchez-Palencia, E. and Zaoui, A., eds. (1987), "Homogenization techniques for composite materials", Lect. Notes Phys., 272, Springer-Verlag.
- Schellekens, J.C.J. (1992), Computational Strategies for Composite Structures, TU Delft.
- Wozniak, Cz. and Wozniak, M. (1995), "Modeling in dynamics of composite materials: Theory and applications", IFTR PAS Rep. No 25.
Cited by
- Effective property predictions in multi-scale solidification modeling using homogenization theory vol.348, pp.3-6, 2006, https://doi.org/10.1016/j.physleta.2005.08.045
- Identification of a microscopic randomness of a particle reinforced composite material with Monte-Carlo Simulation and inverse homogenization analysis vol.10, 2010, https://doi.org/10.1088/1757-899X/10/1/012186
- Polynomial-based Approximate Inverse Stochastic Homogenization Analysis of a Particle Reinforced Composite Material Considering Correlated Multiple Microscopic Random Variations vol.5, pp.1, 2016, https://doi.org/10.7791/jspmee.5.32
- Interval and subinterval homogenization-based method for determining the effective elastic properties of periodic microstructure with interval parameters vol.106-107, 2017, https://doi.org/10.1016/j.ijsolstr.2016.11.022
- Hierarchical stochastic homogenization analysis of a particle reinforced composite material considering non-uniform distribution of microscopic random quantities vol.48, pp.5, 2011, https://doi.org/10.1007/s00466-011-0604-7
- Three-dimensional stochastic analysis using a perturbation-based homogenization method for elastic properties of composite material considering microscopic uncertainty vol.45, pp.3-4, 2008, https://doi.org/10.1016/j.ijsolstr.2007.09.008
- A successive perturbation-based multiscale stochastic analysis method for composite materials vol.102-103, 2015, https://doi.org/10.1016/j.finel.2015.05.001
- Implementation of the Multiscale Stochastic Finite Element Method on Elliptic PDE Problems vol.14, pp.01, 2017, https://doi.org/10.1142/S0219876217500037
- Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach vol.88, pp.7-8, 2010, https://doi.org/10.1016/j.compstruc.2009.12.007
- A Stochastic Homogenization Analysis for a Thermoelastic Problem of a Unidirectional Fiber-Reinforced Composite Material with the Homogenization Theory vol.36, pp.5, 2013, https://doi.org/10.1080/01495739.2013.770359
- Added effect of uncertain geometrical parameter on the response varibility of Mindlin plate vol.20, pp.4, 2005, https://doi.org/10.12989/sem.2005.20.4.477
- Ns-kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites vol.38, pp.5, 2009, https://doi.org/10.1007/s00158-008-0296-6
- Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation vol.18, pp.2, 2004, https://doi.org/10.12989/sem.2004.18.2.137
- Stochastic analysis of laminated composite plate considering stochastic homogenization problem vol.9, pp.2, 2015, https://doi.org/10.1007/s11709-014-0286-2
- Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method vol.45, pp.25-26, 2008, https://doi.org/10.1016/j.ijsolstr.2008.08.017
- Random homogenization analysis in linear elasticity based on analytical bounds and estimates vol.48, pp.2, 2011, https://doi.org/10.1016/j.ijsolstr.2010.10.004
- A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties 2010, https://doi.org/10.1002/nme.2829
- Stochastic Analysis of Microscopic Stress in Fiber Reinforced Composites Considering Uncertainty in a Microscopic Elastic Property vol.4, pp.5, 2001, https://doi.org/10.1299/jmmp.4.568
- Immune algorithm-embedded stochastic meshless method for structural reliability vol.226, pp.2, 2012, https://doi.org/10.1177/0954406211414522