DOI QR코드

DOI QR Code

A local point interpolation method for stress analysis of two-dimensional solids

  • Liu, G.R. (Dept. of Mechanical Engineering, National University of Singapore) ;
  • Gu, Y.T. (Dept. of Mechanical Engineering, National University of Singapore)
  • Published : 2001.02.25

Abstract

A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.

Keywords

References

  1. Atluri, S.N., Kim, H.G. and Cho J.Y. (1999), "A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods", Computational Mechanics, 24, 348-372. https://doi.org/10.1007/s004660050457
  2. Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Computational Mechanics, 22, 117-127. https://doi.org/10.1007/s004660050346
  3. Atluri, S.N. and Zhu, T. (2000), "New concepts in meshless methods", Computational Mechanics, 22, 117-127.
  4. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Methods Engrg., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  5. Belytschko, T. and Organ, D. (1995), "Coupled finite elementTelementTfree Galerkin method", Computational Mechanics, 17, 186-195. https://doi.org/10.1007/BF00364080
  6. Dolbow, J. and Belytschko, T. (1999), "Numerical itegration of the Galerkin weak form in meshfree methods", Computational Mechanics, 23, 219-230. https://doi.org/10.1007/s004660050403
  7. Gu, Y.T. and Liu, G.R. (2000a), "A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids", Computer Methods Appl. Mech. Engrg (in press).
  8. Gu, Y.T. and Liu, G.R. (2000b), "A boundary point interpolation method for stress analysis of solids", Computational Mechanics (in press).
  9. Hegen, D. (1996), "Element-free Galerkin methods in combination with finite element approaches", Computer. Methods Appl. Mech. Engrg., 135, 143-166. https://doi.org/10.1016/0045-7825(96)00994-2
  10. Kothnur, V.S., Mukherjee, S. and Mukherjee, Y.X. (1999), "Two-dimensional linear elasticity by the boundary node method", Int. J. Solids Structures, 36, 1129-1147. https://doi.org/10.1016/S0020-7683(97)00363-6
  11. Liu, G.R. (1999), "A point assembly method for stress analysis of solids", Impact Response of Materials and Structures, Ed. by Shim, V.P.W., Oxford, 475-480.
  12. Liu, G.R. and Gu, Y.T. (1999), "A point interpolation method", Proceedings of the Fourth Asia-Pacific Conference on Computational Mechanics, Singapore, 1009-1014.
  13. Liu, G.R. and Gu, Y.T. (2000a), "Coupling element free Galerkin and hybrid boundary element methods using modified variational formulation", Computational Mechanics, 26, 166-173. https://doi.org/10.1007/s004660000164
  14. Liu, G.R. and Gu, Y.T. (2000b), "Coupling of element free Galerkin method with boundary point interpolation method", Proceedings of Advances in Computational Engineering and Science, Los Angeles, 1427-1432.
  15. Liu, G.R. and Yan, L. (1999), "A study on numerical integration in element free methods", Proceedings of the Fourth Asia-Pacific Conference on Computational Mechanics, Singapore, 979-984.
  16. Liu, G.R. and Yan, L. (2000), "A modified meshless local Petrov-Galerkin method for solids mechanics", Proceedings of Advances in Computational Engineering and Science, Los Angeles, 1374-1379.
  17. Liu, G.R. Yang, K.Y. and Wang, J.G. (2000), "A constraint moving least squares method in meshless methods", (submitted).
  18. Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Methods Engrg., 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
  19. Nayroles, B., Touzot, G. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Computational Mechanics, 10, 307-318. https://doi.org/10.1007/BF00364252
  20. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.

Cited by

  1. Development of mesh-free particle technique for simulation of non-hydrostatic free surface flow vol.105, 2014, https://doi.org/10.1016/j.compfluid.2014.09.003
  2. Dual reciprocity hybrid boundary node method for free vibration analysis vol.321, pp.3-5, 2009, https://doi.org/10.1016/j.jsv.2008.10.018
  3. Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method vol.83, pp.17-18, 2005, https://doi.org/10.1016/j.compstruc.2004.09.020
  4. An Overview on Meshfree Methods: For Computational Solid Mechanics vol.13, pp.05, 2016, https://doi.org/10.1142/S0219876216300014
  5. A nodal integration axisymmetric thin shell model using linear interpolation vol.40, pp.4, 2016, https://doi.org/10.1016/j.apm.2015.09.077
  6. Meshfree radial point interpolation method for analysis of viscoplastic problems vol.82, 2017, https://doi.org/10.1016/j.enganabound.2017.06.012
  7. Dual reciprocity hybrid boundary node method for acoustic eigenvalue problems vol.34, pp.4, 2010, https://doi.org/10.1016/j.enganabound.2009.10.012
  8. Computational complexity and parallelization of the meshless local Petrov–Galerkin method vol.87, pp.1-2, 2009, https://doi.org/10.1016/j.compstruc.2008.08.003
  9. The elastoplastic formulation of polygonal element method based on triangular finite meshes vol.30, pp.1, 2008, https://doi.org/10.12989/sem.2008.30.1.119
  10. MESHFREE METHODS AND THEIR COMPARISONS vol.02, pp.04, 2005, https://doi.org/10.1142/S0219876205000673
  11. Application of Local Point Interpolation Method to Electromagnetic Problems With Material Discontinuities Using a New Visibility Criterion vol.48, pp.2, 2012, https://doi.org/10.1109/TMAG.2011.2169774
  12. A dual reciprocity hybrid radial boundary node method based on radial point interpolation method vol.45, pp.6, 2010, https://doi.org/10.1007/s00466-010-0469-1
  13. A hybrid ‘FE-Meshfree’ QUAD4 element with nonlocal features vol.56, pp.2, 2015, https://doi.org/10.1007/s00466-015-1173-y
  14. A meshless integral method based on regularized boundary integral equation vol.195, pp.44-47, 2006, https://doi.org/10.1016/j.cma.2005.12.005
  15. Mesh-free approximations via the error reproducing kernel method and applications to nonlinear systems developing shocks vol.44, pp.4, 2009, https://doi.org/10.1016/j.ijnonlinmec.2009.02.002
  16. A Meshless Radial Basis Function Based on Partition of Unity Method for Piezoelectric Structures vol.2016, 2016, https://doi.org/10.1155/2016/7632176
  17. Acoustical wave propagator for time-domain dynamic stress concentration in a plate with a sharp change of section vol.117, pp.2, 2005, https://doi.org/10.1121/1.1823231
  18. A NURBS-based Error Reproducing Kernel Method with Applications in Solid Mechanics vol.40, pp.1, 2007, https://doi.org/10.1007/s00466-006-0090-5
  19. Transient heat conduction analysis using the MLPG method and modified precise time step integration method vol.230, pp.7, 2011, https://doi.org/10.1016/j.jcp.2011.01.019
  20. A “FE-meshfree” QUAD4 element based on partition of unity vol.197, pp.1-4, 2007, https://doi.org/10.1016/j.cma.2007.07.010
  21. Local Heaviside-weighted LRPIM meshless method and its application to two-dimensional potential flows vol.59, pp.5, 2009, https://doi.org/10.1002/fld.1810
  22. Performance of the MLPG method for static shakedown analysis for bounded kinematic hardening structures vol.30, pp.2, 2011, https://doi.org/10.1016/j.euromechsol.2010.10.005
  23. Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method vol.27, pp.9, 2003, https://doi.org/10.1016/S0955-7997(03)00045-6
  24. Local Heaviside weighted MLPG meshless method for two-dimensional solids using compactly supported radial basis functions vol.193, pp.1-2, 2004, https://doi.org/10.1016/j.cma.2003.09.003
  25. Evaluation of high order versions of the diffuse approximate meshless method vol.186, pp.2, 2007, https://doi.org/10.1016/j.amc.2006.08.059
  26. On the Numerical Solution of Unsteady Fluid Flow Problems by a Meshless Method vol.11, pp.7-8, 2002, https://doi.org/10.3166/reef.11.989-1004
  27. Meshless solution of a diffusion equation with parameter optimization and error analysis vol.32, pp.7, 2008, https://doi.org/10.1016/j.enganabound.2007.10.002
  28. Meshless analysis of Timoshenko beams based on a locking-free formulation and variational approaches vol.192, pp.39-40, 2003, https://doi.org/10.1016/S0045-7825(03)00422-5
  29. A scaled boundary radial point interpolation method for 2-D elasticity problems vol.112, pp.7, 2017, https://doi.org/10.1002/nme.5534
  30. Weak-form collocation – A local meshless method in linear elasticity vol.73, 2016, https://doi.org/10.1016/j.enganabound.2016.09.010
  31. ‘FE-Meshfree’ QUAD4 element for free-vibration analysis vol.197, pp.45-48, 2008, https://doi.org/10.1016/j.cma.2008.02.012
  32. Improved three-variable element-free Galerkin method for vibration analysis of beam-column models vol.30, pp.9, 2016, https://doi.org/10.1007/s12206-016-0824-z
  33. The Nonconforming Point Interpolation Method Applied to Electromagnetic Problems vol.48, pp.2, 2012, https://doi.org/10.1109/TMAG.2011.2175376
  34. Multi-domain hybrid boundary node method for evaluating top-down crack in Asphalt pavements vol.34, pp.9, 2010, https://doi.org/10.1016/j.enganabound.2010.04.002
  35. A truly meshless pre- and post-processor for meshless analysis methods vol.38, pp.1, 2007, https://doi.org/10.1016/j.advengsoft.2006.07.001
  36. A new hybrid boundary node method based on Taylor expansion and the Shepard interpolation method vol.102, pp.8, 2015, https://doi.org/10.1002/nme.4861
  37. Meshless analysis of the obstacle problem for beams by the MLPG method and subdomain variational formulations vol.22, pp.3, 2003, https://doi.org/10.1016/S0997-7538(03)00050-0
  38. Three-dimensional stochastic quasi-static fatigue crack growth simulations using coupled FE-EFG approach vol.160, 2015, https://doi.org/10.1016/j.compstruc.2015.08.002
  39. Elastoplastic meshless integral method vol.197, pp.51-52, 2008, https://doi.org/10.1016/j.cma.2008.06.019
  40. A new method for meshless integration in 2D and 3D Galerkin meshfree methods vol.34, pp.1, 2010, https://doi.org/10.1016/j.enganabound.2009.07.008
  41. The complex variable meshless local Petrov–Galerkin method for elasticity problems of functionally graded materials vol.268, 2015, https://doi.org/10.1016/j.amc.2015.07.020
  42. Solution bound and nearly exact solution to nonlinear solid mechanics problems based on the smoothed FEM concept vol.42, 2014, https://doi.org/10.1016/j.enganabound.2014.02.003
  43. A meshfree radial point interpolation method (RPIM) for three-dimensional solids vol.36, pp.6, 2005, https://doi.org/10.1007/s00466-005-0657-6
  44. Parallel point interpolation method for three-dimensional metal forming simulations vol.31, pp.4, 2007, https://doi.org/10.1016/j.enganabound.2006.09.012
  45. A Kriging-based error-reproducing and interpolating kernel method for improved mesh-free approximations vol.73, pp.10, 2008, https://doi.org/10.1002/nme.2127
  46. A local point interpolation method for static and dynamic analysis of thin beams vol.190, pp.42, 2001, https://doi.org/10.1016/S0045-7825(01)00180-3
  47. A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis vol.200, pp.13-16, 2011, https://doi.org/10.1016/j.cma.2010.12.017
  48. Analyses of wrinkled and slack membranes through an error reproducing mesh-free method vol.44, pp.11-12, 2007, https://doi.org/10.1016/j.ijsolstr.2006.11.003
  49. A matrix triangularization algorithm for the polynomial point interpolation method vol.192, pp.19, 2003, https://doi.org/10.1016/S0045-7825(03)00266-4
  50. A meshless method using the Takagi–Sugeno fuzzy model vol.72, pp.1, 2012, https://doi.org/10.1007/s10665-011-9472-6
  51. Combined mesh free method and mode matching approach for transmission loss predictions of expansion chamber silencers vol.84, 2017, https://doi.org/10.1016/j.enganabound.2017.08.016
  52. A modified meshless local Petrov–Galerkin method to elasticity problems in computer modeling and simulation vol.30, pp.5, 2006, https://doi.org/10.1016/j.enganabound.2005.12.002
  53. Analysis of Microelectromechanical Systems (MEMS) Devices by the Meshless Point Weighted Least-squares Method vol.40, pp.1, 2007, https://doi.org/10.1007/s00466-006-0077-2
  54. Dual reciprocity hybrid boundary node method for 2-D elasticity with body force vol.32, pp.9, 2008, https://doi.org/10.1016/j.enganabound.2007.11.013
  55. A meshless local moving Kriging method for two-dimensional solids vol.218, pp.2, 2011, https://doi.org/10.1016/j.amc.2011.05.100
  56. A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses vol.200, pp.47-48, 2011, https://doi.org/10.1016/j.cma.2011.08.005
  57. Development of hybrid boundary node method in two-dimensional elasticity vol.29, pp.7, 2005, https://doi.org/10.1016/j.enganabound.2005.02.009
  58. A boundary radial point interpolation method (BRPIM) for 2-D structural analyses vol.15, pp.5, 2003, https://doi.org/10.12989/sem.2003.15.5.535
  59. A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS vol.246, pp.1, 2001, https://doi.org/10.1006/jsvi.2000.3626
  60. Bulk metal forming process simulation based on rigid-plastic/viscoplastic element free Galerkin method vol.479, pp.1-2, 2008, https://doi.org/10.1016/j.msea.2007.06.059
  61. HIGH ROCK SLOPE STABILITY ANALYSIS USING THE ENRICHED MESHLESS SHEPARD AND LEAST SQUARES METHOD vol.08, pp.02, 2011, https://doi.org/10.1142/S0219876211002551
  62. Boundary meshfree methods based on the boundary point interpolation methods vol.28, pp.5, 2004, https://doi.org/10.1016/S0955-7997(03)00101-2
  63. The complex variable meshless local Petrov–Galerkin method for elastodynamic analysis of functionally graded materials vol.309, 2017, https://doi.org/10.1016/j.amc.2017.03.042
  64. Numerical simulation for fluid droplet impact on discrete particles with coupled SPH-DEM method vol.28, pp.11, 2018, https://doi.org/10.1108/HFF-11-2017-0464
  65. A Novel Pick-Out Theory and Technique for Constructing the Smoothed Derivatives of Functions for Numerical Methods vol.15, pp.03, 2018, https://doi.org/10.1142/S0219876218500706
  66. An Algorithm for Fluid–Solid Coupling Based on SPH Method and Its Preliminary Verification pp.1793-6969, 2019, https://doi.org/10.1142/S0219876218460088
  67. Line element-less method (LEM) for beam torsion solution (truly no-mesh method) vol.195, pp.1-4, 2008, https://doi.org/10.1007/s00707-007-0557-2
  68. Meshless Methods Coupled with Other Numerical Methods vol.10, pp.1, 2001, https://doi.org/10.1016/s1007-0214(05)70003-1
  69. Meshless equilibrium on line method (MELM) for linear elasticity vol.35, pp.4, 2001, https://doi.org/10.12989/sem.2010.35.4.511
  70. Application of meshless local Petrov Galerkin method (MLPG5) for EIT forward problem vol.4, pp.4, 2001, https://doi.org/10.1088/2057-1976/aace4e
  71. Modified numerical approaches for a class of Volterra integral equations with proportional delays vol.38, pp.2, 2001, https://doi.org/10.1007/s40314-019-0819-3
  72. Formulation of local numerical methods in linear elasticity vol.16, pp.5, 2020, https://doi.org/10.1108/mmms-05-2018-0094
  73. Smoothed Finite Element Methods for Predicting the Mid to High Frequency Acoustic Response in the Cylinder-Head Chamber of a Diesel Engine vol.17, pp.9, 2020, https://doi.org/10.1142/s0219876219500609
  74. Analysis of Aeroacoustic Properties of the Local Radial Point Interpolation Cumulant Lattice Boltzmann Method vol.14, pp.5, 2021, https://doi.org/10.3390/en14051443
  75. A weak-form interpolation meshfree method for computing underwater acoustic radiation vol.233, pp.None, 2001, https://doi.org/10.1016/j.oceaneng.2021.109105