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Abstract

It is quite difficult to calculate the collapse probability of a system such as statically indeterminate structure that has many paossible modes or
paths to complete failure and the problem has remawned essentially unsalved. A structure is synthesized by several components ar elements
and its capacity 1o resist the given loads is a function of the capacity of the individual elemenl. Thus it 1s reasonable to assess the prabability of
failure of the system based upon those of its elements. This paper proposes an efficient technique o directly assess the rehabilty of a complex
structural systern from the reliabilities of its components or elements. The theory for the calculation of the probability of a struciural syslem is
presenled. The target requirements of the method and the fundamental assumptions governing the method are clearly stated. A portai frame
and two trusses are selected to demonstrate the efficiency of the method by comparing the results obtained from the propased method to

those from the existing melhods in the literalure.

Nevieords: sistem faifure probabifine retiahiline of components, structural systent, staticallv indererminare stracine

1. INTRODUCTION

Recent developments in structural mechanics  have
shown that there is no rational explanation of the degree of
absolute safety provided by structures designed using tra-
ditional working stress design or ultimate strength methods
{Freudenthal ot ai. 1966: Task Committee on Structural
Sufety 1972). In response to these developments. the mod-
ern trend has been to take into consideration the random
nature of the loads 1o which structures are subjected. and
the variation in the material properties of the structural
constituents. In other words, the loads impacting a struc-
tre. and the resistance of that structure are considered o
be random variables. The safety margin provided by the
structure is the amount by which the random resistance of
the structure exceeds the random load applied to the struc-
ture. Failure 1s said (0 oceur when the safety margin is less
than, ur cqual to, zero. The relative safety of a structure is
now expressed inderms of a probability of failure. which ix
the complement of the reliability of the structure.

Many aticmpts have been made on the evaluation of re-
liability of structures. [n general. real structures which arc
highly indeterminate. in other words “complex™, may fail
in one or combination of several medes. The approaches to
evaluation of structural safety such complex structures can
be categorized into three methods: (a) numerical integra-
tion method: (b) failure path method: and (¢) simulation.

In the numerical integration method, a failure mode 18
defined by a limit state surface which divides the space of
basic variables into two scts, the safety set and the failure
set (Ditlevsen 1979). The probability of failure can be cal-
culated by integration of the probability mass density func-
tions over the failure set. Some rescarchers have attempted
to evaluate the probability of failur¢ by integrating nu-
merically the joint probability density function of the ap-
plied loads over the failure set (Kam et al. 1983, Lin and

Corotis; 1985). However. these approaches were limited to
wo-dimensional spaces since direet integration Is imprac-
tical in multi-dimensional space.

In the failure path method, reliability analysis of a struc-
tural system can be divided inte two steps: ta) identifica-
tion of failure modes: and (b) estimation of failure prob-
abilitics of indtvidual modes and the overall sysiem. The
failure modes can be identified using the standard strue-
tural analysis and may be generated automatically as dem-
onstrated by Watwoad (1979} and Gorman (1981). How-
ever, real structures can have many difforent taiture modes
and it s infeasible (o enumerate all the possible failure
modes. Many studies have focused on the possibility of
using dominant failure modes based on the assumption that
safety of a structural system can be esumaled etficiently
using these dominant failure modes (Moses and Stahl
1978 Ang and Ma 1981: Murotsu et al. 1984 Thott-
Christensen  and  Murotsu  1986:  Ranganathan  and
Deshpande 1987: Tung and Kiremidjian 1992). The last
step of reliability analysis is calculation of failure probabil-
ity of a system using combination of failure modes and
bound techniques.

Monte-Carlo simulation has been often used to estimate
the probability of failure and to venfy the results of other
rchability  analysis methods (Ang and Tang 1984:
Grimmelt and Schueller 1982; Schucller and Stix 1987:
Ranganathan and Deshpande 1987). In this techmique. the
random loads and random resisiance of a structure are
simulated and these simulated data arc used to find out if
the structure fails or not, according to pre-determined limit
states. The probability of failure is the rclative ratio be-
tween the number of failure occurrence and the total num-
ber of simulations. This technique is easy to apply but
when encountered low failure probability which is typical
in real structural systems, the number of simulation is lar-
ger so the method is generally not practical for most realis-
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tic problems.

Although these previous works represent great strides in
structural safety cvaluation. many problems remain to be
solved. Onc of obstacles in the arca of reliability analysis
15 difficulty to calculate failure probability of complex
structures, which are, for example. highly indeterminate
and have many element, using currently developed meth-
ods. The objective of this paper 1s to present a practical
methodology that can be used to estimate the system reli-
ability of arbitrary structures and to provide evidence to
support the validity of the methodology.

2. THEORY OF THE METHOD

The reliability or safety of a structure is its ability to
withstand the design loads for a specified period of time. 1f
the probability of failure of the system is given by P e
the rehability of the system, R, is defined as

R=1- PS_\-\'h‘]ll {l )

A practical methodology 1s presented below for the
evaluation of the relhability of arbitrary structural systems.
To mect this objective. the following four tasks will be
accomplished: (a} describe the background of the method-
ology: (b) discuss a set of realistic target requirements for
the methodelogy: (¢) postulate a set of assumptions to be
uscd as a basis for the methodology and describe the basic
components of the methodology that ar¢ consistent with
the target requirements and the basic assumptions; and (d)
select a model used in this study to estimate the failure
probabilities of components/elements.

(1) Background

A mcchanical system is any combination of individual
elements that are synthesized to perform a dedicated me-
chanical function. For the purposes of this study, any me-
¢hanical system may be assigned to one of the following
three categorics: series systems {See Figure 1). parallel
systems (See Figure 2), or hybrid systems (See Figure 3).
Serics systems are those systems in which the failure of
any element leads to the failure of the system. Parallel sys-
tems are those systems in which the combined failure of
each and every element of the svstem results in the failure
of the system. If a system does not satisfy these strict defi-
nitions of “series™ or “'parallel” systems, the system is clas-
sified as a hybrid system. Hybrid systems are those sys-
tems m which “few™, “some”, or “most™ (but not “anyone™
or “all”} of the elements must fail in order for the system
to fail. Any combination of elements whose failure results
in the failure of the system is known as a failure mode. In
the language of structural mechanics. hybrid systems are
statically indeterminate {redundant) structures with many
possible failure modes.

A hybrid system may be described as a series system of
parallel modes of faiture. For a single mode of failure in a
system, the possibility exists for there to be statistical cor-
relation between the demand on the elements in that mode

or the capacity of the elements to resist the demand. Fur-
thermore, since the same element may participate in more
than one mode of failure. statistical correlation must also
exist among the various failure modes of a hybrid {or sc-
ries or paraliel} system. [n this study. hybrid systems in
which statistical correlation exists among elements and
failure modes are designated here to be complex svstems.
A major problem in reliability theory is the efficient and
accurate determination of the failure probabilities of highly
redundant structural systems with correlated modes of fail-
ure.

— 1 3

Figure |. Series System

Figure 2. Parallel System

Figurc 3. Hybrid System

(2) Target Requirements of the Methodology

The target requirements for the proposed methodology
are divided into two categories: primary requirements and
functional requirements. Primary requirements are those
characteristics and features that the methodology should
possess. Functional requirements are specific tasks that
must be performed by components of the methodology
such that the primary requirements are satisfied. The de-
sired primary requirements associated with the methodol-
ogy can be stated as follows: (a) the reliability predictions
should be accurate; (b) the rationale for the method should
be logical: (¢} the methodology should be internally con-
sistent; (d) the methodology should be relevant; (¢) the
methodology should be versatile; (f) the methodology
should not be overly complex; and (g) the methodology
should be computationally competitive. These primary
characteristics will be satisfied if the following functional
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requirements are performed:

1. The predicted probabilities of system failure
should be close to values predicted by other
theories;

2. The prediction should agree with Monte Carlo
simulations of structural system failure;

3. How the proposed method is related to other
methods of system reliability evaluations
should be clearly indicated;

4. The method should be at least as computa-
tionally efficient as the other leading methods;

5. The methodology should apply to any struc-
tural type (e.g., frames, trusses, etc....); and

6. The basic assumptions underlying the meth-
odology should be clearly stated.

(3) Fundamental Assumptions Governing the Methodol-
ogy

The proposed methodology builds on five fundamental
assumpticns that involve the following: (a) the definition
of failure modes; (b) the extent of statistical correlation
among safety margins of basic elements; (c) the sequence
of component failure; (d) the definition of system failure;
and (e) a rule for the rapid estimation of the failure prob-
ability of the system and the identification of the compo-
nents of the most likely mode of failure. Theses basic as-
sumptions are discussed below.,

Tipes of Failure Modes: Two types of failure modes con-
sidered in this methodology ¢an be discussed with the truss
shown in Figure 4. The first type of failure mode is desig-
nated the “global failure mode™. This type of mode exists
when the structure as a whole becomes geometrically un-
stable, In Figure 4(a) for example, the degrees of static
indeterminacy (redundancy) of the structure are three.
Therefore. the structure will become kinematically unsta-
ble if any combination of four of its sixteen elements fait.
In general, if 5 is the redundancy of a structure, the struc-
ture fails if s + 1 components fail.

Third Floor

Second Floor

First Floor

e

(a) Whole System {b) Three Substructures of the System

Figure 4. A 16-Member Truss

Note that the structure may also be considered to have
failed if anyone of the three stories fails. Figure 4(b) de-
picts three logical substructures of the complete system.
Note that each substructure has a redundancy of one.
Therefore. if any two elements of one of the substructures
fail, a floor of the structure will fail. The latter failure
modes are deemed local failure modes. Thus the number of
fatlure modes for a structure is the sum of the global
modes and the local modes. This discussion can be ex-
tended to other types of structures. All that one has to do is
to determine the redundancy of the global structure, isolate
the basic substructure units, then determine the redundancy
of the substructures.

Justification of the Correlation Assumption: The basic unit
in the reliability of a hybrid system is the failure mode.
Note that each failure mode is a parallel system. The com-
putation of the failure probability of a parallel system can
be simplified significantly if it is assumed that the safety
margins of the basic elements are completely correlated.
This assumption holds true for many practical structures.
Let a structure have M failure elements (e.g., the failure in
tension of each and every one of the truss members of the
truss shown in Figure 4). The random safety margin, g;, of
the i" element is given by

NL

g =R, - ZaiJSJ (2)

i=l

where R; is the random resistance of element i, S, is the
applied j" load on the structure. a;, is the influence coeffi-
cient which depends upon the geometry, redundancy, and
material properties of the structure, and NL is the number
of applied loads.

Let elements k, 1, m, n, and o be involved in failure
mode j. Then the probability of failure of that mode, Py, is
given by

P, =Pffg, <0]n[g, <0]N[g, <0]Nfe, <0]N[g, <o)} 3)

For most structures made of the same material, the resis-
tance, R;, are correlated. Also, because of the common
existence of the loads S; in Equation (2), the random safety
margins are also correlated. Thus in most structures, one
expects a significant degree of correlation among the
safety margins. Therefore, if it is assumed that the safety
margins of each and every mode are complete correlated,
an estimate of the probability of failure of the mode given
by Equation (3) is

P, ~Min{p,.py, P PosPo) (4)

where, for example,

p, =P[g, <0] (5)

Note that the estimate of the failure probability in Equa-
tion (4) represents an upper bound to the failure probabil-
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ity of a parallel system. This estimate is, therefore, a con-
servative estimate of the failure probability of the mode.

The Consequence of Ignoring the Sequence of Component
Fuaifure: Here it is asserted that the estimation of the failure
probability of a highly redundant system can be signifi-
cantly simplified if the sequence of the failure of the com-
ponents of a given mode is ignored. If the latter assump-
tion 1s adhered to, at least two major conscquences follow.
First. the number of failure modes to be considered is re-
duced significantly. For example, if there are a total of n
failure components and cach mode contains r elements, in
the  beta-unzipping  method  (Thoft-Christensen  and
Murotsu 1986} there are Pinr) possible modes; whereas, if
the sequence of the failure of the components 15 ignored,
there are C(n,r) possible modes. Note that P(n.r) = r!C{n.r)
where P denotes permutation and C denotes combination.
For the truss example shown in Figure 4, for the case of
global modes. r = 4 and n = 16. Accordingly. P(n.ry =
43,680 and C(n,r) = 1¥20.

The second consequence of the sequence-relaxation as-
sumption is the reduction in the number of structural
analyses that have to be performed to make a determina-
tion of the probability of failure of the system. In the beta-
unzipping method. for exampie. if one wants to determine
the most likely mode of failure for the truss in Figure 4. for
s = 3. three structural analyses and re-analyses are required
to determine the most “probable™ sequence of failure. If
the sequence of failure is ignored. only a single structural
analysis is required.

The Probability of System Failure: Having introduced the
simplifying assumptions of complete correlation among
modes and the umimportance of the sequence of conmpo-
nent failure in a given mode. the safety of a structure with
many modes must now be defined. As noted previously,
any hybrid system may be modeled as a series system of
parallel modes such as the one depicted in Figure 3. Note
that the failure probability of mode | is assigned to the
structure according to the rule stipulated in Equation (4). If
F, is denoted to be the event that failure of mode i occurs
and P, is the probability of occurrence of that event, then
the failure probability of the system is given by

NM
P\'_\'ﬂem = P{UFI} (6)
1=l

Since complete correlation among the modes has been
assumed, it follows that

P:_\-.\Icln = Max[P]’P."P_‘\*“"P\\I] (7)

Rapid Estimation of System Reliability: 1n order to execute
Equation (7), one needs to know the probability of failure
of each mode. Even though the sequence of component
failure has been ignored. the task of identifying all NM
possible failure modes ceould be formidable. For example,
in the structure provided in Figure 4, the number of failure

modes in the structure with a redundancy of as little as 3
and 16 possible failure elements is 1820. Thus the objec-
tive of this section is to develop a simple rule that engen-
ders the solution of Equation {(7) without having to identify
the numerous individual failure modes. This objcctive can
be accomplished via mathematical induction.

Let the system have n failure components. For example.
in the truss depicted in Figure 4, th¢ number of compo-
nents is 16. Assuming that the component failure prob-
abilities, a, arc known, reorder the probabilities in de-
scending order of  magnitude such that
a,»>a.>a,>--->a,. Note that the magnitude of the
probability a, is not necessarily the probability assigned to
component 1. With this reordering, the author can make
the following inferences:

I. If the failure model of the siructure is a serics sys-
tem,

P.... =Max[P.P,.P......P,,] =2, (8)

system

[ 2]

[f the redundancy of the structure is one. the mode
of maximum probability of failure contains compao-
nents with failure probabilities a, and a». Conse-
quently,

=4a. (9

N Len

(%]

[f the redundancy of the structure is two, the mode
with the maximum probability of failure contains
the components with failure probabilities a, a., and
ax. Conscquently.

P =a

System 3

(10}

4. By mathematical induction, if the redundancy of the
structure is s, the mode with the maximum prob-
ability of failure contains the components with fail-
urc probabilities a;, as, ay, ... ., 2. a.-. Consequently,

P =a_, (1)

systen

On the basis of Statement 4 above. the author propose
the following rule to estimate the probability of failure of
an arbitrary structure without a knowledge of the sequence
of failure of the components in a mode or the elements of
the mode.

If the failure probabilities of the elements are rearranged
in order of descending magnitude a; > as > a; > ... > ay
and if the redundancy of the structure (or substructure) is s,
an estimaie of the failure probabifity of the system is given
by P =a

Nystem s+ "

Furthermore, the s + | elements participating in the fail-
ure mode are thase elements with failure probabilities a,
as, Ay, ... . 4, 4, Note that the estimatce given by Equation
(I1) may be thought of as a lower bound of the upper
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bound of failure mode probabilities.

(4) Estimation of Failure Probabilities of Components

Suppose a structural element has only one load effect S
resisted by one resistance R. The load effect S may be ob-
tained from the applied loading Q through a structural
analysis. [t 15 important to note that R and S should be ex-
pressed in the same units. If its resistance R is less than, or
equal to, the stress resultant S acting on it, that element is
considered to have failed. The probabihty of failure, py, of
the structural element can be stated in any of the following
ways

pr=P(R<S)=P(R-S=0)=PR/S=<1) (12)

or
pr=P[G(R, 8) £ 0] (13)

where G(#) is termed the “limit state function™ or the “fail-
ure function™.

The most notable example is when R and S are normal
random variables with means pg and pg and variances ox°
and os°, respectively. The safety margin M = R - S then
has a mean and variance

Un = Ug - Us (14)

and
3 - b -
Oy = Or™ + 05~ (15)

using well-known rules for addition (subtraction) of nor-
mal random variables. Equation (12) then becomes

0-u !
pr=P(R-S<0)=PM=<0)= & —=' (16)
v Om

where @ is the standard normal distribution function (zero
mean and unit variance). Using Equations (14) and (15) 1t
follows that

-1 )
pi= @(M%hdn—& (17)
{op +05) ")

where B is defined as the safety index (Comnell 1969)

B=umioum (18)

Evidently, Equation (17} yields the exact probability of
failure when both R and S are normally distributed and
hence B is a direct measure of the safety of the structural
element, i.e., greater B represents greater safety.

In Equation (17), only two random variables. i.e.. load
and resistance, were considered. If the limit state function
G(X) consists of more than two basic random variables, a
useful approach is to calculate approximate moments by
expanding G(X,, Xz ..... . X)) as a first-order Taylor series
about the means p, y .....Hy (Angand Tang 1975)

TV ZCI{TIRNTARSRNTING (19)

and

2
) =( 0G .
oy * Z(ﬁj . Ok (20)
This 1s the well-known First-Order Second-Moment
(FOSM) method. The safety index p defined by Equation
(18) is still effective in this case and the probability of fail-
ure can also be formulated, provided the basic vanables X;
=i=12,..... . n) are normally distnibuted

pr=D(-B) (20)

In this study. Equations (19), (20), and (21) will be used
as a mathematical model to estimate the failure probabili-
ties of structural elements.,

3. NUMERICAL EXAMPLES

The validity of the proposed methodology which can es-
timate the system reliability of arbitrary structure is dem-
onstrated via numerical examples. [t is assumed that the
yield stresses of the members and the applied loads to the
structure are statistically independent normal random vari-
ables. The objective of this section is to compare the exact
reliability of a structure obtained using existing reliability
theory with the reliability resulted from the proposed
methodology. Three structures are selected for the purpose
of this section. These structures include: (a) a redundant
portal frame; (b) 6-member truss with one degree of re-
dundancy: and (c) 16-member truss with three degrees of
redundancy.

(1) Case I: Portal Frame

Reliabilitv using the Existing Method: A simple portal
frame is shown in Figure 5 (see Thoft-Christensen and
Murotsu 1986). In this example. all joints are rigid mo-
ment-resisting joints. The height of the column is 5 meters
and the span of the beam is 10 meters. Material properties
are estimated such that all structural elements have the
same area A = 0.459x10” m’ and the same second moment
of area I = 0.579x10™ m*. All members are assumed to be
made of the same material with modulus of elasticity E =
0.21x10° kN/m*. density p = 7850 kg/m’, and Poisson’s
ratio v = 0.3, The plastic bending moment capacities of the
beam (R,) and columns (R.) are given such that

f 'l

y

Sm

Sm J Sm J

Figure 5. Geomety of Portal Frame
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Hg, =135 kNm, o, =13.5 kNm

He, =135 kNm, o =13.5 kNm
where p denotes the mean and o represents the standard
deviation.

3 4 5
2 X X6
1 X X7
7 TIZITT

Figure 6. Potential Locations of Plastic Hinges

H Vi
=
= AR5V g:.= 2ReH2R- SV &= 3Rp+R,- 3V
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@ J ® / o |
1 R i -8 i
@ = 3R+R.- §V g+ = 4R.- SH = 2Ry#2R,- SH

[o] [o] [&]

g- = Ry+3R.- SH gs = Ret3R.- SH g0 = 4Rp—2R.~ SH-5V

[ o]

gw = 2Ry—4R;- SH-5V

Figure 7. Possible Collapse Mechanisms

Table |. Failure Probabilities for Possible Falure Modes

Safety Index| Failure Probability
Mode No. Failure Function
{B) {F)
] g, = 4R, - SV 5.385 0.363 x 107
2 g.= 2Ry = 2R, - 5V 7.107 0.59] x 10"
3 2.=3R.~ R, -5V 6.528 0.334x 10"
4 g2:= 3R+ R, - 5V 6.528 0.334x 10"
s gs = 4R, - SH 4.373 0.612 x 107
6 g = 2Ry — 2R, - SH 5.632 0.892 « 10°
7 g:=R.~ 3R, -3H 5218 0.902 x 107
8 gs = Rn~ 3R, - 3H 5218 0.902 x 107
9 go= 4Ry + 2R - SH - 5V 4425 0.482 x 10°
10 gio= 2Ry +dR - SH-5V|[ 4428 0.482 x 10°

As shown in Figure 5, this portal frame is subjected to a
random vertical load V and a random horizontal load H.
The concentrated vertical load acts at the middle of the
beam and the horizontal load is applied at the top of the
left column. Alf loads are taken to be static. The vertical
load V and horizontal load H are given by

py =45kN, oy=4.5kN
Uy = 55 kN, ay = 5.5 kN.

The collapse of the example structure may be caused by
the formation of plastic hinges at the joints, The potential
locations of plastic hinges are indicated by “x”* in Figure 6.
Ten possible collapse mechanisms resulting from the com-
bination of the vertical load V and the horizontal load H
are shown in Figure 7. The corresponding limit state func-
tions (g;} using the virtual work theory (McConnac 1975)
are also presented in Figure 7. In each function, the work
performed by the external loads during the displacement is
subtracted from the internal work absorbed by the hinges.
Failure is said to occur when this function is less than, or
equal to, zero.

To compute the failure probabilities of the possible fail-
ure modes, the standard procedure from the First-Order
Second-Moment (FOSM) rehability method summarized
in the previous section is utilized. Table | lists the safety
indices and the corresponding failure probabilities for the
ten failure modes.

A simple bounds technique (Cornell 1967) is adopted to
estimate the probability of failure of the system and then
the lower and upper bounds are

[SH] 10)

max(F)<Py~lun <1- H(I_F)"‘ZF (22]

where F; 1s the probability of occurrence of mode 1. Note
that the lower bound assumes that all failure medes are
fully dependent and upper bounds assumes that all faifure
modes are independent. From Table 1, the system failure
probability is bounded by 0.612x10°™° < Py, < 0.160x 0,
Clearly, the failure modes 1, 2, 3, 4, 6, 7, and 8§ have negli-
gible effects on the failure probability of the system.

Reliability using the Proposed Method: The critical failure
elements | to 7 are indicated by the symboel “x™ in Figure 6.
In this example, a joint fails when the resisting plastic
moment capacity of the joint is exceeded. These critical
elements are taken to be those locations where plastic
hinges are most likely to occur in the structure. Note that
the structure is statically indeterminate to the third degree.
If the sequence of failure is ignored, failure of any four of
the seven joints leads to the failure (kinematic instability)
of the system. Therefore. there are thirty five possible
combinations of seven element taken four at a time. The
general failure model which describes this simple structure
1s therefore a system with thirty five, four-arm, parallel
modes in series,

To compute the failure probabilities of the joints, the
standard procedure from the First-Order Second-Moment
(FOSM) reliability method is utilized. First, failure func-
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Table 2. Component Failure Probabilities Using Proposed Methodology
{(Portal Frame)

Hoint Failure Function Safery | Failure Probability
No. Index (B} (P}

I [ g =R —j-1.5681H - 04919V | 4.384 ).584 x 107

2 | &2=R.-|0.9379H - 0.9973V| | 847K 0.115x 10"

3 | 2= Re— (.9379H - 0.9973V: | 8478 0.Jisx 10"

4 | gy=R,- 000I5H=~ 1.5027V | | 4457 0415 10

S | go=Ry- -09349H - 0.9973v - | 2.558 0.526 x 10°

6 | ge=R ~|-0.9349H-0.9973Vv; | 2.538 0.526 x 107

7 | g:= R | 1.8500H = 0.4919V 1.680 1.465 x 10

tions are generated for cach joint. Beginning with the
structure in Figure S. onc can firstset H=1 and V = 0.
Next, a numerical structural analysis on the system can be
performed and the resultant moment at cach joint due to
unit horizontal load can be set equal to ay,. Next, one can
set H =0 and V =}, then perform a similar numerical
structural analysis, and set the resultant moment at each
joint due to unit vertical load to be by,. With R, as the re-
sisting moment of joint /, the safety margin, g;, tor the joint
becomes:

g =R, _laII|H+b\-‘iv (23)

where |a, H +b\_iV] represents the absolute value of the
resultant moment. These functions are provided in the sec-
ond column of Table 2. Next, using the loading and resis-
tance statistics with Equations {19)~{(21), safety indices
and the corresponding failure probabilitics are listed in the
third and fourth column of Table 2.

According 1o the rule proposed in this study, the system
failure probability is the fourth largest value among the
seven component failure probabilities. For example, the
value of 0.584x10™, which is the fourth largest value in
Table 2. is taken as the system failure probability.

(2) Case II: 6-Member Truss

Reliabifity using the Existing Method: Consider a statically
indeterminate 6-member truss with one degree of redun-
dancy shown in Figure 8 (Murotsu et al. 1980). The truss
height 15 91.44 ¢m and the width is 121.9 cm. Table 3 lists
the material properties of truss members. As shown in Fig-
ure 8, one static concentrated force, P, is acting at the top
of the left vertical member and the statistics of P are given
such that pp = 44.45 kN and op = 4.445 kN.

Murotsu et al. {1980) defined that the complete failure
of the structure is determined by investigating singularity
of the total structure stiffness matrix K formed with the
members in survival. That is. the criterion for complete
failure is given by

IK|=0 (24

where |K| represents the determinant of matrix K.
In case of a statically indeterminate truss, there exist

many possibie failure modes or paths to complete failure
of the structure and it is impossible in practice to generate
all of them. Hence, the failure probability is estimated by
evaluating its lower and upper bounds. The fower bound is
evaluated by selecting the dominant modes of failure and
calculating their failure prebabilities. The upper bound is
evaluated by assuming that the redundant truss behaves
itself like a statically determinate truss, i.e.. the structure
fails if any one member is subject to failure [See Murotsu
et al. (1980) for detail]. Table 4 presents the lower bound
and upper bound [Murotsu et al. (1980)] of the system
fatlure probabilities along with the Monte Carlo sirmulation
resuit performed by Kathir (1991) on the same structure. In
this example. failure due to buckling is not considered.

Reliability using the Proposed Method: The failure ele-
ment can be any member of 6 truss elements. In this ex-
ample. a member fails when the resisting axial load capac-
ity in tension or compression of the member is exceeded.
Failure via buckling is not considered. Note that the struc-
ture is statically indeterminate to the one degree. If the
sequence of failure 1s ignored, failure of any two of the six
truss elements leads to the failure (kinematic instability) of
the system. Therefore, there are fifteen possible combina-
tions of six taken two at a time.

P=44.45kN 6

2 5| 91.44|cm

121.9 cm

Figure 8. Statically Indeterminate 6Member Truss
with One Degree of Redundancy

Table 3. Material Properties for Truss Members (6Member Truss)

Member Cross-sectio?al area| Mean value of yield | Elastic modulus,

Number A (em) stress, a.(Pa) E (Pa)

1,2,5.6 1.33 2.76 x 1¢* 206x 10"
3,4 | 49 2.76 x 10° 2.06 x t0"

Table 4. Failure Probabilitiex from Murotsu et at. {1980) and Kathir

(1991)
Cov Failure Probability
P G, Lower bound Lpper bound Simulation
ol | 01 1.96 x 10° 6.40 x 107 1.60x 107
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To compute the failure probabilities of the failure ele-
ments, the standard procedure from the First-Order Sec-
ond-Moment (FOSM) reliability method is utilized. First,
failure functions are generated for each element. Begin-
ning with the structure in Figure 8, sct P = 1 and perform a
numerical structural analysis on the system then set the
resulting internal axial force at each member due to the
unit load to be a,, With V, as the resisting axial capacity of
glement /, the safety margin. g,, for the element becomes:

g =V

. |2, (25)
where ‘aIP‘ is the absolute value of the resultant axial
force in tension or compression. These functions are pro-
vided in the second column of Table 5. Next. using the
loading and resistance statistics with Equations (19)~(21),
safety indices and the corresponding failure probabilities
are listed in the third and fourth column of Table 5. Ac-
cording to the rnule proposed in this study. the system fail-
ure probability is the second largest value among the six
component failure probabilities. For example, the value of
3.59x107. which is the second largest value in Table 5, is
taken as the system failure probability.

{3) Casc HH: lo-Member Truss

Relighility using the Existing Method: Consider a statically
indcterminate 16-member truss with three degree of re-
dundancy shown n Figure 9 (See Murotsu et al. 1980).
The truss width is 121.9 cm and consists of three storics m
which the height of a story is 91,44 ¢m. Table 6 lists the
material properties of truss members. As shown in Figure
9. three static concentrated forces denoted P are acting at
the top of cach story where wp = 44.45 kN and cp = 4.445
kN.

The failure modes are the same as described in the ex-
ample of a 6-member truss. Table 7 presents the lower
bound and upper bound [Murotsu et al. (1980)] of the sys-
tem failure probabilities. In this example, failure due to
buckling is not considered.

P=4445kN 16
12 15] 91.44cm
13 4
P=4445kN 1
7 101 9144 cm
8 9
P=4445kN 6
) 5] 91.44cm
3 4
1 B

121.9 cm

Figure 9. Statically Indeterminate |6Member Truss with
Three Degrees of Redundancy

Table 5. Component Failure Probabilities Using Proposed Methodology
{6-Member Truss)

Element _ _ Safety Index | Failure Probability
Number Failure Function B P

] g =V,- 0.50P, 33758 3.69 x 10

2 g=V,- 0.3751P 4.969 3.36x 107

3 2, = V.~ |0.6250P ; 2,689 3.59 % 107

4 9=V, - -0.6250P 2689 3.59x 107

5 g: = V:—|-0375(P| 4969 3.36x 107

6 ge= Vi = |-0.50P 3.375 3.69 x 107

Table 6. Matertal Properties for Truss Members (16-Member Truss)

Member | Cross-sectional area| Mean value of yield |Etastic modulus.
Number A {em) stress, a,(Pa) E (Pa)
| 3.35
2.5 R.64
3.4, 14 5.76
6 229 2.76x 108 2.06 x 10"
7,.8.10 403
9 738
11,12, 15 1.58%
13,18 229

Table 7. Failure Probabilives from Murotsu et al. { |98()

cov Fatlure Probability

Lower bound Upper bound

0.1 0.] 2.73x10° 3.44 x 107

Reliability using the Proposed Method: The failure ele-
ment can be any member of 16 truss elements. In this ex-
ample, a member fails when the resisting axial load capac-
ity in tension or compression of the member is exceeded.
Failure via buckling is not considered. The system may fail
as a result of global instability or local instability. First, the
global instability 1s examined. Note that the structure is
statically indeterminate to the third degree. If the sequence
of failure 1s 1gnored, failure of any four of the sixteen truss
clements leads to the failure (kinematic instability} of the
system. Therefore, there are 1820 possible combinations of
sixteen taken four at a time. As illustrated in Figure 4, one
may define local failure if anyone of the three stories fails.
Therefore, if any two elements of one of the substructures
fail, a floor of the structure will fail.

The failure functions for each element are generated us-
ing Equation (25). These functions are provided in the sec-
ond column of Table 8. Next, using the loading and resis-
tance statistics with Equations {19}~(21). safety indices
and the corresponding failure probabilities are listed in the
third and fourth column of Table 8. According to the rule
proposed in this study, the system failure probability is the
fourth largest value among the sixteen component failure



A New Methodology for the Rapid Calculation of Svstem Refiability of Complex Structures 79

probabilities for the global failure modes. For example, the
value of 2.76x10, which is the fourth largest value in
Table 8, is taken to be the system failure probability. For
the tocal modes, the failure probability for each floor is
given by the second largest failure probability of the ele-
ments. For cxample, the faiure probability for the first
floor is 5.04x 107, the tfailure probability for the second
floor is 2.37x 107, and the failure probability for the third
floor is $.14x107"° Thereforc, if the local and global
modes are considered together. the failure probability of
the system is 5.04x107

Table K. Componesm Failure Probubiliues Using Proposed Methodology
(16-Member Tross)

Element ) Safety fndex | Faibure Probability

N Failure Function i) )
t ¢V, = 1.2430P ! 3.485 276 5 10
2 g:=Va— 3 1828P | 3498 2.34 x 107
3 gV, — 2 |9R4P! 3288 S.04 % [0
3 g =V, - -] 5538p 5187 1.07 ¢ 107
s 2:= Vi -3.56084P . 2788 265 x 107
6 g, =V, - -).3929P| 0975 152~ 10"
5 g-- Va- |.7734P" 2.277 873 x 107
% U~ Vi - 0.7949P 6.503 39310
Y 2y - Vi - 21 7052P, <867 221 x 107
10 iy - Vo = 1 227(P! 4.576 2375 1Y
H 2= V- 0 063%P. 9319 586107
al e = Vi = [ 0.5237P 3.091 245x 107
12 =V - 103741 P 7127 Sidx 1o
13 2=V - -08760P 7334 Li2x n"
13 oo Vi — 10.2245P 7.517 279 x 10
16 g.o= Vi~ -0.2992P 7.727 5.82x 10"

4. DISCUSSION OF RESULTS

In Table 9, the estimated failure probabilities generated
using the proposed methodology are compared 1o those
calculated from existing veliability techniques. Note that
the basic assumptions behind the methodology were: (a)
the safety margins of the clements and failure modes are
tully correlated; (b) the kinematre instability of a structural
system defines the failure or collapse of the structure; and
{c) the order of the failure of components in a given mode
is distegarded. Certainly, investigations and comparisons
on other structures to confirm the assumptions must be
produced in the future. From the resuits, the following
observations are made:

I~ The predicted probabilitics of system faifure using
the proposed technique close to or fall within
bounds proposed in the literature;

2. In the case where data werc available, the predicted
faiture probability agrees welt with the result ob-
tainced via Monte Carlo simulation;

3. The proposed technique is computationally efficient
when compared to other methods, especially for the

complex structures that are highly indeterrainate
and have many elements;

4. The proposed technique automatically secks and
identifics the most probable faiture mode; and

5. The proposed technique can be applied to any struc-
wra) type.

5. SUMMARY AND CONCLUSIONS

In this paper, a general methodology for the estimation
of systents reliability for arbitrary structural systems was
proposed. First, a theory to estimate the sysiem failure
probability was devcloped under the basic assumptions
that the failure modes arc completely correlated and that
the sequence of component failure tn 2 given mode is not
important. According to the conscquence of these assump-
tions, a simple rule has been proposed for direct estimation
of system failure probability from the clement or compo-
nent fajlure probabilities. A model 10 estimate the element
or component failure probabilities was tormulated by the
First-Order Second-Moment (FOSM) reliability method.
Finally, the proposed technique was compared to the cur-
rent reliability methods (i.c., bound technique and Monte
Carlo simulation) through three examples: (1) a simple
portal trame; (2) a six-member truss; and (3) a sixteen-
member truss.

From this study. two conclusions are made. First. the re-
sults obtained for the example structurcs used here indicate
that the predicted system reliability values agree closely
with those values predicted by other approaches. Second.
the proposed technique is compwationally efficient when
compared to other methods, especially for the complex
structures that are highly indeterminate and have many
elements.

Table 9 Comparisons of Reliability Technigues

Probability of Failure of System
Type of Bounds Technigue Monie Carlo | Proposed
Structure Lower Upper Simulation Technique
Portal Frame | 6.12x10" | 1 60x10" 5.84x10°
6-Member " 3 5 =
Tross 1.96x10 6.40x10 J.60x10 3.59%10
'6'}“‘?’““' 273x10" | 3.84x10° . 5.04x10"
TUSS
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