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Abstract

It is q냐ite difficult to calculate the collapse probability of a system such as statically indeterminate structure that has many possible modes or 
paths to complete failure and the problem has remained essentially unsolved. A structure is synthesized by several components or elements 
and its capacity to resist the given loads is a function of the capacity of the individual element. Thus it is reasonable to assess the probability of 
fail니re of the system based upon those of its elements. This paper proposes an efficient technique to directly assess the reliability of a complex 
structural system from the reliabilities of its components or elements. The theory for the calculation of the probability of a structural system is 
presented. The target requirements of the method and the fundamental assumptions governing the method are clearly stated. A portal frame 
and two tmsses are selected to demonstrate the efficiency of the method by comparing the res니Its obtained from the proposed method to 
those from the existing methods in the literature.

Keywords: svstem failure probuhilitv. i-cliahilitv of components, structural system, statically indeterminate structui'e

1. INTRODUCTION

Recent developments in structural mechanics have 
shown that there is no rational explanation of the degree of 
absolute safety provided by structures designed 니sing tra­
ditional working stress design or ultimate strength methods 
(Freudenthal ct al. 1966; Task C'ommittcc on Structural 
Safety 1972). In response to these developments, the mod­
ern trend has been to take into consideration the random 
nature of the loads to which structures arc subjected, and 
the variation in the matcri시 properties of the structural 
constit나ents. In other words, the loads impacting a struc­
ture. and the resistance of that structure are considered to 
be random variables. The safety margin provided by the 
struct니rc is the amount by which the random resistance of 
the structure exceeds the random load applied to the struc- 
t나rc. Faihurc is said to occ니!' when the safety margin is less 
than, or equal to, zero. The i■이ativc safety of a structure is 
now expressed in terms of a probability of failure, which is 
the complement of the reliability of the structure.

Many attempts have been made on the evaluation of re­
liability of structures. In general, real structures which arc 
highly indeterminate, in other words "complex”, may fail 
in one or combination of several modes. The approaches to 
evahjation of structural safety such complex structures can 
be categorized into three methods: (a) numerical integra­
tion method; (b) failure path method; and (c) simulation.

In the numerical integration method, a failure mode is 
defined by a limit state surface which divides the space of 
basic variables into two sets, the safety set and the failure 
set (Ditlevsen 1979). The probability of fail니re can be cal­
culated by integration of the probability mass density func­
tions over the failure set. Some researchers have attempted 
to eval니ate the probability of failure by integrating nu­
merically the joint probability density function of the ap­
plied loads over the failure set (Kam et al. 1983, Lin and 

Corotis; 1985). However, these approaches were limited to 
two-dimensional spaces since direct integration is imprac­
tical in multi-dimensional space.

In the failure path method, reliability analysis of a struc­
tural system can be divided into two steps: (a) identifica­
tion of failure modes; and (b) estimation of failure prob­
abilities of individual modes and the overall system. The 
failure modes can be identified using the standard str니c- 
t니ral analysis and may be generated automatically as dem­
onstrated by Watwood (1979) and Gorman (1981). How­
ever. real structures can have many ditTcrcnt failure modes 
and it is infeasible to en니mcralc all the possible failure 
modes. Many st니dies have focused on the possibility of 
using dominant fail니re modes based on the assumption that 
safety of a structural system can be estimated efficiently 
니sing these dominant failure modes (Moses and Stahl 
1978; Ang and Ma 1981; Murotsu et al. 1984; Thoft- 
Christensen and Murotsu 1986; Ranganathan and 
Deshpande 1987; Tung and Kircmidjian 1992). The last 
step of reliability analysis is calc니lation of failure probabil­
ity of a system 니sing combination of failure modes and 
bound techniq니es.

Monte-Carlo simulation has been often 나sed to estimate 
the probability of failure and to verify the results of other 
reliability analysis methods (Ang and Tang 1984; 
Grimmelt and Schueller 1982; Schueller and Stix 1987; 
Ranganathan and Deshpande 1987). In this technique, the 
random loads and random resistance of a structure are 
simulated and these simulated data arc used to find out if 
the structure fails or not according to pre-determined limit 
states. The probability of failure is the relative ratio be­
tween the number of failure occurrence and the total n니m- 
ber of simulations. This technique is easy to apply but 
when encountered low fail니re probability which is typical 
in real structural systems, the mjmbcr of simulation is lar­
ger so the method is generally not practical for most rcalis- 
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tic problems.
Although these previous works represent great strides in 

structural safety evaluation, many problems remain to be 
solved. One of obstacles in the area of reliability analysis 
is difficulty to calculate failure probability of complex 
structures, which are, for example, highly indeterminate 
and have many element, using c냐rrcntly developed meth­
ods. The objective of this paper is to present a practical 
methodology that can be used to estimate the system reli­
ability of arbitrary struct나res and to provide evidence to 
support the validity of the methodology.

2. THEORY OF THE METHOD

The reliability or safety of a structure is its ability to 
withstand the design loads for a specified period of time. If 
the probability of failure of the system is given by 卩勺気비m 
the reliability of the system, R, is defined as

R = 1 - Psystem ( 1)
A practical methodology is presented below for the 

evaluation of the reliability of arbitrary structural systems. 
To meet this objective, the following tour tasks will be 
accomplished: (a) describe the background of the method­
ology; (b) discuss a set of realistic target requirements fbr 
the methodology; (c) postulate a set of assumptions to be 
used as a basis fbr the methodology and describe the basic 
components of the methodology that are consistent with 
the target requirements and the basic assumptions; and (d) 
select a model used in this study to estimate the failure 
probabilities of components/elemcnts.

(1) Background
A mechanical system is any combination of individual 

elements that are synthesized to perform a dedicated me­
chanical function. For the purposes of this study, any me­
chanical system may be assigned to one of the following 
three categories: series systems (See Figure 1), parallel 
systems (See Figure 2), or hybrid systems (See Figure 3). 
Series sy아ems are those systems in which the failure of 
any element leads to the failure of the system. Parallel sys­
tems are those systems in which the combined failure of 
each and every element of the system results in the failure 
of the system. If a system does not satisfy these strict defi­
nitions of “series” or "parallel'' systems, the system is clas­
sified as a hybrid system. Hybrid systems are those sys­
tems in 디아lich ''fBw", “some", or "most" (but not “anyone” 
or "all") of the elements must fail in order for the system 
to fail. Any combination of elements whose fail니re results 
in the failure of the system is known as a failure mode. In 
the language of structural mechanics, hybrid systems are 
statically indeterminate (redundant) structures with many 
possi미e failure modes.

A hybrid system may be described as a series system of 
parallel modes of failure. For a single mode of fBil니re in a 
system, the possibility exists fbr there to be statistical cor­
relation between the demand on the elements in that mode 

or the capacity of the elements to resist the demand. Fur­
thermore, since the same element may participate in more 
than one mode of failure, statistical correlation must also 
exist among the various fail니re modes of a hybrid (or sc­
ries or parallel) system. In this study, hybrid sy아ems in 
which statistical c이relation exists among elements and 
failure modes are designated here to be complex systems. 
A major problem in reliability theory is the efficient and 
accurate detennination of the failure probabilities of highly 
redundant structural systems with correlated modes of fail­
ure.

Figure 1. Series System

Figure 3. Hybrid System

(2) Target Requirements of the Methodology
The target requirements fbr the proposed methodology 

are divided into two categories: primary requirements and 
functional requirements. Primary requirements are those 
characteristics and features that the methodology should 
possess. Functional requirements are specific tasks that 
must be performed by components of the methodology 
such that the primary requirements are satisfied. The de­
sired primary requirements associated with the methodol­
ogy can be stated as follows: (a) the reliability predictions 
should be accurate; (b) the rationale for the method should 
be logical; (c) the methodology should be internally con­
sistent; (d) the methodology 아】ould be relevant; (e) the 
methodology should be versatile; (f) the methodology 
should not be overly complex; and (g) the methodology 
should be computationally competitive. These primary 
characteristics will be satisfied if the following functional 
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requirements are performed:

1. The predicted probabilities of system foilure 
should be close to values predicted by other 
theories;

2. The prediction should agree with Monte Carlo 
simulations of structural system failure;

3. How the proposed method is related to other 
methods of system reliability evaluations 
should be clearly indicated;

4. The method should be at least as computa­
tionally efficient as the other leading methods;

5. The methodology should apply to any struc­
tural type (e.g., frames, trusses, etc....); and

6. The basic assumptions underlying the meth­
odology should be clearly stated.

(3) Fundamental Assumptions Governing the Methodol­
ogy

The proposed methodology builds on five fundamental 
assumptions that involve the following: (a) the definition 
of failure modes; (b) the extent of statistical correlation 
among safety margins of basic elements; (c) the sequence 
of component failure; (d) the definition of system failure; 
and (e) a rule for the rapid estimation of the failure prob­
ability of the system and the identification of the compo­
nents of the most likely mode of failure. Theses basic as­
sumptions are discussed below.

Types of Failure Modes: Two types of failure modes con­
sidered in this methodology can be discussed with the truss 
shown in Figure 4. The first type of failure mode is desig­
nated the "global failure mode". This type of mode exists 
when the structure as a whole becomes geometrically un­
stable. In Figure 4(a) for example, the degrees of static 
indeterminacy (redundancy) of the structure are three. 
Therefore, the structure will become kinematically unsta­
ble if any combination of four of its sixteen elements fail. 
In general, if s is the redundancy of a structure, the struc­
ture fails if s + 1 components fail.

Third Floor

Second Floor

(a) Whole System (b) Three Substructures of the System

Figure 4. A 16-Member Truss

Note that the structure may also be considered to have 
failed if anyone of the three stories fails. Figure 4(b) de­
picts three logical sub마ructures of the compete system. 
Note that each substructure has a redundancy of one. 
Therefore, if any two elements of one of the substructures 
fail, a floor of the structure will fail. The latter failure 
modes are deemed local failure modes. Th니s the number of 
failure modes for a structure is the sum of the global 
modes and the local modes. This discussion can be ex­
tended to other types of structures. All that one has to do is 
to determine the redundancy of the global structure, isolate 
the basic substructure units, then determine the redundancy 
of the substructures.

Justification of the Correlation Assumption: The basic unit 
in the reliability of a hybrid system is the failure mode. 
Note that each failure mode is a parallel system. The com­
putation of the failure probability of a parallel system can 
be simplified significantly if it is assumed that the safety 
margins of the basic elements are completely correlated. 
This assumption holds true fbr many practical structures. 
Let a structure have M failure elements (e.g., the failure in 
tension of each and every one of the truss members of the 
truss shown in Figure 4). The random safety margin, gi, of 
the i,h element is given by

NL

gi=R,-£%S, (2)
J 니

where Rj is the random resistance of element i, Sj is the 
applied jth load on the structure, is the influence coeffi­
cient which depends upon the geometry, redundancy, and 
material properties of the structure, and NL is the number 
of applied loads.

Let elements k, 1, m, n, and o be involved in failure 
mode j. Then the probability of 您il나!of that mode, Pj, is 
given by

pj=마辰 k 이 n[& < 이이「)辰 < 이 < o]) ⑶

For most structures made of the same material, the resis­
tance, Rj, are correlated. Also, because of the common 
existence of the loads Sj in Equation (2), the random safety 
margins are also correlated. Thus in most structures, one 
expects a significant degree of correlation among the 
safety margins. Therefore, if it is assumed that the safety 
margins of each and every mode are complete correlated, 
an estimate of the probability of failure of the mode given 
by Equation (3) is

Pj aMin{pk，P|,Pm，Pn，P。} (4)

where, fbr example,

Pk=P[g” 이 (5)

Note that the estimate of the failure probability in Equa­
tion (4) represents an upper bound to the failure probabil­
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ity of a parallel system. This estimate is, therefore, a con­
servative estimate of the failure probability of the mode.

The Consequence of Ignoring the Sequence of Component 
Failure1. Here it is asserted that the estimation of the failure 
probability of a highly redundant system can be signifi­
cantly simplified if the seq니ence of the failure of the com­
ponents of a given mode is ignored. If the latter assump­
tion is adhered to, at least two major consequences follow. 
First, the number of failure modes to be considered is re­
duced significantly. For example, if there are a total of n 
failure components and each mode contains r elements, in 
the beta-unzipping method (Thoft-Christensen and 
Murotsu 1986) there arc P(n,r) possible modes; whereas, if 
the sequence of the failure of the components is ignored, 
there are C(n,r) possible modes. Note that P(n,r) = r!C(n,r) 
where P denotes permutation and C denotes combination. 
For the truss example shown in Fig니re 4, for the case of 
global modes, r = 4 and n 16. Accordingly, P(n,r)= 
43,680 and C(n,r)= 1820.

The second consequence of the sequence-relaxation as­
sumption is the reduction in the number of structural 
analyses that have to be performed to make a determina­
tion of the probability of failure of the system. In the beta­
unzipping method, for example, if one wants to determine 
the most likely mode of failure for the truss in Figure 4, for 
s = 3, three structural analyses and rc-analyses are required 
to determine the most “probable” seq나cnce of failure. If 
the sequence of failure is ignored, only a single str니chiral 
analysis is required.

The Probability of System Failure: Having introduced the 
simplifying assumptions of complete correlation among 
modes and the unimportance of the sequence of compo­
nent failure in a given mode, the safety of a structure with 
many modes m니마 now be defined. As noted previously, 
any hybrid system may be modeled as a series system of 
parallel modes such as the one depicted in Figure 3. Note 
that the failure probability of mode j is assigned to the 
structure according to the rule stipulated in Equation (4). If 
Fi is denoted to be the event that failure of mode i occurs 
and R is the probability of occurrence of that event, then 
the failure probability of the system is given by

~NM -

PSy».em=P IJFi (6)
_ i=l _

Since complete correlation among the modes has been 
assumed, it follows that

^system = Max[Pj, P2 , P3 ,. . ., PNM ] (7)

Rapid Estimation of System Reliability: In order to execute 
Equation (7), one needs to know the probability of failure 
of each mode. Even though the sequence of component 
failure has been ignored, the task of identifying all NM 
possible failure modes could be formidable. For example, 
in the structure provided in Figure 4, the number of failure 

modes in the structure with a redundancy of as little as 3 
and 16 possible failure elements is 1820. Thus the objec­
tive of this section is to develop a simple rule that engen­
ders the solution of Equation (7) without having to identify 
the numerous individual failure modes. This objective can 
be accomplished via mathematical induction.

Let the system have n failure components. For example, 
in the truss depicted in Fig니re 4, the number of compo­
nents is 16. Assuming that the component failure prob­
abilities, a；, arc known, reorder the probabilities in de­
scending order of magnitude such that 
a, > a? > a3 > • • • > an . Note that the magnitude of the 
probability is not necessarily the probability assigned to 
component 1. With this reordering, the author can make 
the following inferences:

1. If the failure model of the structure is a series sys­
tem,

^system - Max[P,, P2 , Pv . .., PNM ] = 3 , ⑻

2. If the red니ndancy of the struct니re is one, the mode 
of maximum probability of failure contains compo­
nents with failure probabilities % and a2. Conse­
quently,

Psystem = ¥ (9)

3. If the redundancy of the structure is two, the mode 
with the maximum probability of failure contains 
the components with failure probabilities a】，a2, and 
a3. Consequently,

Psys.em=a3 (10)

4. By mathematical induction, if the redundancy of the
structure is s, the mode with the maximum prob­
ability of failure contains the components with fail­
ure probabilities a,, a2, a3, , as? as.|. Consequently,

Rystem - 3s + l U D

On the basis of Statement 4 above, the author propose 
the following rule to estimate the probability of failure of 
an arbitrary structure with。니t a knowledge of the seq니ence 
of failure of the components in a mode or the elements of 
the mode.

If the failure probabilities of the elements are rearranged 
in order of descending magnitude a t > a：> aj> .....  > aN
and if the redundancy of the structure (or substructure) is s, 
an estimate of the failure probability of the system is given 
如 Psys,em = as+l .

F니!Ihcrmoi'e, the s + 1 elements participating in the fail­
ure mode are those elements with failure probabilities 
a2, a3, ... , as, aST1. Note that the estimate given by Equation 
(11) may be thought of as a lower bound of the upper 
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bound of failure mode probabilities.

(4) Estimation of Failure Probabilities of Components
Suppose a structural element has only one load effect S 

resisted by one resistance R. The load effect S may be ob­
tained from the applied loading Q through a structural 
analysis. It is important to note that R and S should be ex­
pressed in the same units. If its resistance R is less than, or 
equal to, the stress resultant S acting on it, that element is 
considered to have failed. The probability of failure, pf, of 
the structural element can be stated in any of the following 
ways

pf = P(R < S) - P(R - S < 0) - P(R/S < 1) (12)

or
Pf=P[G(R,S)"] (13)

where G(») is termed the "limit state function,, or the "fail­
ure function".

The most notable example is when R and S are normal 
random variables with means(丄r and |is and variances oR2 
and os2, respectively. The safety margin M = R - S then 
has a mean and variance

卩M = I丄R - M-S (14)

and
5盘=+ (5扌 (15)

using well-known rules for addition (subtraction) of nor­
mal random variables. Equation (12) then becomes

Pf=P(R-S《0) = P(M《0)= ①으二브虬 (16)
I 丿

where ① is the standard normal distribution function (zero 
mean and unit variance). Using Equations (14) and (15) it 
follows that

Pr= 0丄가虹뜨1 = 以-6) (17)
((席+矢)-丿

where p is defined as the safety index (Cornell 1969)

阡卩m/%4 (18)

Evidently, Equation (17) yields the exact probability of 
failure when both R and S are normally distributed and 
hence p is a direct measure of the safety of the structural 
element, i.e., greater P represents greater safety.

In Equation (17), only two random variables, ie, load 
and resistance, were considered. If the limit state function 
G(X) consists of more than two basic random variables, a 
useful approach is to calculate approximate moments by 
expanding G(Xh X2,....., Xn) as a first-order Taylor series
about the means 卩％，卩对，…，卩(Ang and Tang 1975)

Pm " G（卩％，卩x?,•••,卩X”） (19)

This is the well-known First-Order Second-Moment 
(FOSM) method. The safety index p defined by Equation 
(18) is still effective in this case and the probability of fail­
ure can also be formulated, provided the basic variables Xj 
=(i = 1, 2,...... , n) are normally distributed

pf = <D(-p) (21)

In this study, Equations (19), (20), and (21) will be used 
as a mathematical model to estimate the failure probabili­
ties of structural elements.

3. NUMERICAL EXAMPLES

The validity of the proposed methodology which can es­
timate the system i•미iability of arbitrary structure is dem­
onstrated via numerical examples. It is assumed that the 
yield stresses of the members and the applied loads to the 
structure are statistically independent normal random vari­
ables. The objective of this section is to compare the exact 
reliability of a structure obtained using existing reliability 
theory with the reliability resulted from the proposed 
methodology. Three structures are selected for the purpose 
of this section. These structures include: (a) a redundant 
portal frame; (b) 6-member truss with one degree of re­
dundancy; and (c) 16-member truss with three degrees of 
redundancy.

(1) Case I: Portal Frame
Reliability using the Existing Method: A simple portal 
frame is shown in Figure 5 (see Thoft-Christensen and 
Murotsu 1986). In this example, all joints are rigid mo­
ment-resisting joints. The height of the column is 5 meters 
and the span of the beam is 10 meters. Material properties 
are estimated such that all structural elements have the 
same area A = 0.459x1 (尸 m2 and the same second moment 
of area I = 0.579x10" m4. All members are assumed to be 
made of the same material with modulus of elasticity E = 
0.21 xlO9 kN/m2, density p = 7850 kg/m3, and Poisson's 
ratio v = 0.3. The plastic bending moment capacities of the 
beam (Rb) and columns (RJ are given such that

Figure 5. Geometry of Portal Frame
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卩电=135 kNm , Or. = 13.5 kNm
卩r =135 kNm, % =13.5 kNm 

where 卩 denotes the mean and cy represents the standard 
deviation.

Figure 6. Potential Locations of Plastic Hinges

①

g] =4Rb-5V

②

& = 2Rb+2〜5V

③

g3 = 3Rb+K- 5V

g6 = 2Rb+2R*H

g9 = 4Rb+2R「5H-5V

⑤④

g4 = 3Rb+&- 5V

g7 = Rb+3Rc-5H

■오 -M_
gs = 4R：-5H

g8 = Rb+3R<- 5H

gio = 2Rb+4R«5H-5V

Figure 7. Possible Collapse Mechanisms

Table 1. Failure Probabilities for Possi아e Failure Modes

Mode No. Failure Function
Safety Index

(8)

Failure Probability

(Fi)

1 gi=4Rb-5V 5.385 0.363 x IO。

2 印= 2Rb + 2&-5V 7.107 0.591 x 10'12
3 ga = 3R" R< - 5V 6.528 0.334 x 1(严
4 g4 = 3Rb+R.-5V 6.528 0.334 x 1(严
5 g5-4R€-5H 4.373 0.612 x 1(尸
6 g6 = 2Rb + 2&-5 니 5.632 0.892 x IO®
7 g7 = Rb + 31* - 5H 5.218 0.902 x IO。

8 g8 = Rb + 3& - 5H 5.218 0.902 x 1(尸
9 g9 = 4Rb + 2Rc-5H-5V 4.425 0.482 x i0 -
10 gio-2Rb + 4R<-5H-5V 4.425 0.482 x 1(尸

As shown in Fig니re 5, this portal frame is subjected to a 
random vertical load V and a random horizontal load H. 
The concentrated vertical load acts at the middle of the 
beam and the horizontal load is applied at the top of the 
left column. All loads are taken to be static. The vertical 
load V and horizontal load H are given by

Pv = 45 kN, av = 4.5 kN 
卩h = 55 kN, = 5.5 kN.

The collapse of the example structure may be caused by 
the formation of plastic hinges at the joints. The potential 
locations of plastic hinges are indicated by "x" in Figure 6. 
Ten possible collapse mechanisms resulting from the com­
bination of the vertical load V and the horizontal load H 
are shown in Figure 7. The corresponding limit state func­
tions (gj) using the virtual work theory (McCormac 1975) 
are also presented in Figure 7. In each function, the work 
performed by the external loads during the displacement is 
subtracted from the internal work absorbed by the hinges. 
Failure is said to occur when this function is less than, or 
equal to, zero.

To compute the failure probabilities of the possible fail­
ure modes, the standard procedure from the First-Order 
Second-Moment (FOSM) reliability method summarized 
in the previous section is utilized. Table 1 lists the safety 
indices and the corresponding failure probabilities for the 
ten failure modes.

A simple bounds technique (Cornell 1967) is adopted to 
estimate the probability of failure of the system and then 
the lower and upper bcnmds are

io io
(22) 

i-1 i-l

where F\ is the probability of occurrence of mode i. Note 
that the lower bound assumes that all failure modes are 
fully dependent and upper bounds assumes that all failure 
modes are independent. From Table 1, the system failure 
probability is bounded by 0.612x10” < Psystem < 0.160xl0'4. 
Clearly, the failure modes 1, 2, 3, 4, 6, 7, and 8 have negli­
gible effects on the failure probability of the system.

Reliability using the Proposed Method: The critical failure 
elements 1 to 7 are indicated by the symbol "x" in Figure 6. 
In this example, a joint fails when the resisting plastic 
moment capacity of the joint is exceeded. These critical 
elements are taken to be those locations where plastic 
hinges are most likely to occur in the structure. Note that 
the structure is statically indeterminate to the third degree. 
If the sequence of failure is ignored, i^ilure of any four of 
the seven joints leads to the failure (kinematic instability) 
of the system. Therefore, there are thirty five possi미e 
combinations of seven element taken four at a time. The 
general failure model which describes this simple structure 
is therefore a system with thirty five, four-arm, parallel 
modes in series.

To compute the failure probabilities of the joints, the 
standard procedure from the First-Order Second-Moment 
(FOSM) reliability method is utilized. First, failure func-
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Table 2. Component Failure Probabilities Using Proposed Methodology 
(Portal Frame)

Joint 
No. Failure Function

Safety 
Index (P)

Failure Probability 

(Pi)

1 負=&-|-1.5681H + 0.49!9Vi 4.384 0.584 x 105

2 g2 = K -|0.9379H- 0.9973V 1 8.478 0.115x 10巾

3 4 = Rb T 0.9379H - 0.9973V ! 8.478 0.115 x 1016
4 g4 = Rb-10.0015H+ 1.5027V 1 4.457 0.415 x 1(尸

5 g5 = Rb 一丨-0.9349H 一 0.9973V | 2.558 0.526 x IO'2

6 g6-Rc-|-0.9349H-0.9973V j 2.558 0.526 x 10 2

7 g7 = Rc - 1 1.5590H + 0.4919V| 1.680 0.465 x 101

(2) Case II: 6-Member Truss
Reliability using the Existing Method: Consider a statically 
indeterminate 6-member truss with one degree of redun­
dancy shown in Figure 8 (Murots나 et al. 1980). The truss 
height is 91.44 cm and the width is 121.9 cm. Table 3 lists 
the material properties of truss members. As shown in Fig­
ure 8, one static concentrated force, P, is acting at the top 
of the left vertical member and the statistics of P are given 
such that 卩p = 44.45 kN and cyP = 4.445 kN.

Murotsu et a). (1980) defined that the complete failure 
of the structure is determined by investigating singularity 
of the total structure stififhess matrix K formed with the 
members in survival. That is, the criterion fbr complete 
failure is given by

|k| = o (24)

where |k| represents the determinant of matrix K.
In case of a statically indeterminate truss, there exi마

tions are generated for each joint. Beginning with the 
structure in Figure 5, one can first set H 1 and V = 0. 
Next, a numerical structural analysis on the system can be 
performed and the resultant moment at each joint due to 
unit horizontal load can be set equal to aHj. Next, one can 
set H 0 and V = 1, then perform a similar numerical 
structural analysis, and set the resultant moment at each 
joint due to unit vertical load to be byi- With Rj as the re­
sisting moment of joint /, the safety margin, gj, for the joint 
becomes:

g, =R,-柿出 + 膈乂 (23)

where |aHiH + bviV| represents the absolute value of the 
resultant moment. These functions are provided in the sec­
ond column of Table 2. Next, using the loading and resis­
tance statistics with Equations (19)〜(21), safety indices 
and the corresponding failure probabilities are listed in the 
third and fourth column of Table 2.

According to the rule proposed in this study, the system 
failure probability is the fourth largest value among the 
seven component failure probabilities. For example, the 
value of 0.584xl0'5, which is the fourth largest value in 
Table 2, is taken as the system failure probability. 

many possible failure modes or paths to complete failure 
of the structure and it is impossible in practice to generate 
all of them. Hence, the failure probability is estimated by 
evaluating its lower and upper bounds. The lower bound is 
evaluated by selecting the dominant modes of failure and 
calculating their failure probabilities. The upper bound is 
evaluated by assuming that the red니ndant truss behaves 
itself like a statically determinate truss, i.e., the structure 
fails if any one member is subject to faihne [See Murotsu 
et al. (1980) for detail]. Table 4 presents 나le lower bound 
and upper bound [M니!'otsu et al. (1980)] of the system 
f^ihire probabilities along with the Monte Carlo simulation 
result performed by Kathir (1991) on the same structure. In 
this example, failure d니e to buckling is not considered.

Reliability using the Proposed Method: The failure ele­
ment can be any member of 6 truss elements. In this ex­
ample, a member fails when the resisting axial load capac­
ity in tension or compression of the member is exceeded. 
Failure via buckling is not considered. Note that the struc­
ture is statically indeterminate to the one degree. If the 
sequence of failure is ignored, failure of any two of the six 
truss elements leads to the failure (kinematic instability) of 
the system. Therefore, there are fifteen possible combina­
tions of six taken two at a time.

Figure 8. Statically Indeterminate 6-Member Truss 
with One Degree of Red니ndancy

Table 3. Material Properties for Truss Members (6-Member Truss)

Member
Number

Cross-sectional area 
A (cm2)

Mean value of yield 
stress, ay(Pa)

Elastic modulus, 
E(Pa)

1,2, 5,6 1.33 2.76 x 108 2.06 x 10"
3,4 1.49 2.76 x IO" 2.06 x 1011

Table 4. Failure Probabilities from Murotsu et al. (1980) and Kathir
(1991)

cov Failure Probability

p 5 Lower bound Upper bound Sim 나｝ation
0.1 0.1 1.96x 1(尸 6.40 x 1(尸 3.60 x 103
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To compute the failure probabilities of the failure ele­
ments, the standard procedure from the First-Order Sec­
ond-Moment (FOSM) r이iability method is utilized. First, 
也ihjre functions are generated fbr each element. Begin­
ning with the structure in Figure 8, set P = 1 and perform a 
numerical structural analysis on the system then set the 
resulting internal axial force at each member due to the 
unit load to be With V； as the resisting axial capacity of 
element z, the safety margin, gj, fbr the element becomes:

g, =V, -|a,p| (25)

where 미 is the absolute value of the resultant axial 
force in tension or compression. These functions are pro­
vided in the second column of Table 5. Next, using the 
loading and resistance statistics with Equations (19)〜(21), 
safety indices and the corresponding foilure probabilities 
are listed in the third and fourth column of Table 5. Ac­
cording to the rule proposed in this study, the system fail­
ure probability is the second largest value among the six 
component failure probabilities. For example, the value of 
3.59x1。」which is the second largest value in Table 5, is 
taken as the system failure probability.

(3) Case III: 16-Member Truss
Reliability using the Existing Method: Consider a statically 
indeterminate 16-member truss with three degree of re­
dundancy 마iown in Figure 9 (See Murotsu et al. 1980). 
The truss width is 121.9 cm and cousins of three 아orics in 
which the height of a story is 91.44 cm. Table 6 lists the 
material properties of truss members. As shown in Figure 
9, three static concentrated forces denoted P are acting at 
the top of each story where 卩p = 44.45 kN and = 4.445 
kN.

The failure modes are the same as described in the ex­
ample of a 6-member truss. Table 7 presents the lower 
bound and upper bound [Murotsu et al. (1980)] of the sys­
tem failure probabilities. In this example, failure due to 
buckling is not considered.

Figure 9. Statically Indeterminate 16-Member Truss with 
Three Degrees of Redundancy

Table 5. Component Failure Probabilities Using Proposed Methodology 
(6-Member Truss)

Element
Number Failure Function

Safety Index 

(P)

Failure Probability 

(Pi)

1 gi-V.-IO.5OPI 3.375 3.69 x 1(尸

2 fe = V2-|0.375IP| 4.969 3.36 x IO'7

3 = V3 - 1 0.6250P 1 2.689 3.59 x 1(尸

4 g4 = V4 - |-0.6250P 2.689 3.59 x IO」

5 g5-V5-|-0.3751P| 4.969 3.36 x 10'7

6 廉=/ 一 I-0.50P 1 3.375 3.69 x lb

Table 6. Material Properties fbr Truss Members (16-Member Truss)

Member
Number

Cross-sectional area 
A (cm2)

Mean value of yield 
stress. by(Pa)

Elastic modulus, 
E (Pa)

1 3.35
2,5 8.64

3,4, 14 5.76
6 2.29 2.76 x 108 2.06 x 10"

7, 8, 10 4.03
9 7.35

11, 12, 15 1.58
13, 16 2.29

Table 7. Failure Probabilities from Murotsu et al. (1980)

cov Failure Probability

p 6 Lower bound Upper bound

0.1 0.1 2.73 x IO6 3.84 x IO'

Reliability using the Proposed Method: The failure ele­
ment can be any member of 16 truss elements. In this ex­
ample, a member foils when the resisting axial load capac­
ity in tension or compression of the member is exceeded. 
Failure via buckling is not considered. The system may fail 
as a result of global instability or local instability. First, the 
global instability is examined. Note that the structure is 
statically indeterminate to the third degree. If the sequence 
of failure is ignored, failure of any four of the sixteen truss 
elements leads to the failure (kinematic instability) of the 
system. Therefore, there are 1820 possible combinations of 
sixteen taken four at a time. As illustrated in Figure 4, one 
may define local failure if anyone of the three stories fails. 
Therefore, if any two elements of one of the substructures 
fail, a floor of the structure will fail.

The mihne functions for each element are generated us­
ing Equation (25). These functions are provided in the sec­
ond column of Table 8. Next, using the loading and resis­
tance statistics with Equations (19)〜(21), safety indices 
and the corresponding failure probabilities are listed in the 
third and fourth column of Table 8. According to the rule 
proposed in this study, the system failure probability is the 
fourth largest value among the sixteen component failure 
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probabilities for the global failure modes. For example, the 
value of 2.76xl0'4, which is the fourth largest value in 
Table 8, is taken to be the system failure probability. For 
the local modes, the failure probability for each floor is 
given by the second largest failure probability of the ele­
ments. For example, the failure probability for the first 
floor is 5.04x1 (尸，the failure probability fbr the second 
floor is 2.37〉시 0*, and the failure probability fbr the third 
floor is 5.14x10이% Therefore, if the local and global 
modes are considered together, the failure probability of 
the system is 5.04x10셔.

1. The predicted probabilities of system failure using 
the proposed technique close to or fall within 
bo니nds proposed in the literature;

2. In the case where d자a were available, the predicted 
failure probability agrees well with the result ob­
tained via Monte Carlo sim니ation;

3. The proposed technique is computationally efficient 
when compared to other methods, especially fbr the

Table 8. Component Failure Probabilities Using Proposed Methodology 
(16-Member Truss)

Element
Number Failure Function

Safety Index

(P)

Failure Probability

(R)
I gi-V|-| 1.2430P{ 3.455 2.76 x 10시
2 g2 = VI3.1828P| 3.498 2.34 x 10시
3 g3-V3-|2.1964P| 3.288 5.04 x 10시
4 g4 = V』-l-1.5538P| 5.187 1.07 x i(r7
5 密=V5-「3.5684P| 2.788 2.65 x 1(尸
6 응(, = V"-0.3929P ! 6.975 l.52x IO'12
7 g7 -• V7 - i 1.7734P： 2.377 8.73 x 1(尸
8 gx - V8 - 1 0.7949P 1 6.503 3.93 x 10-"
9 go - V()- !-1.7052P| 5.867 2.2i x IO"
10 gio- VI0-i-l.2271PI 4.576 2.37 x 106
11 gi( - Vtl-l0.0648Pi 9.319 5.86 x IO2'
12 gi2 = V12-|0.5257P| 4.091 2.15x 10 s
13 知= V】3-10.3741 Pi 7.127 5.14 x 10 13
14 gu = Vl4-i-0.8760Pj 7.334 1.12 x IO13
15 V15-!-0.2245Pj 7.517 2.79 x IO'14
16 gi(, = V|6-!-0.2992P| 7.727 5.52 x 10 ,?

4. DISCUSSION OF RESULTS

In Table 9, the estimated failure probabilities generated 
using the proposed methodology are compared to those 
calc니ated from existing reliability techniques. Note that 
the basic assumptions behind the methodology were: (a) 
the safety margins of the elements and failure modes are 
fully correlated; (b) the kinematic instability ofa structural 
system defines the failure or collapse of the structure; and 
(c)the order of the failure of components in a given mode 
is disregarded. Certainly, investigations and comparisons 
on。由er structures to confirm the assumptions must be 
produced in the future. From the results, the following 
observations are made: 

complex structures that are highly indeterminate 
and have many elements;

4. The proposed technique automatically seeks and 
identifies the most probable failure mode; and

5. The proposed technique can be applied to any struc­
tural type.

5. SUMMARY AND CONCLUSIONS

In this paper, a general methodology fbr the estimation 
of systems「이iability fbr arbitrary structural systems was 
proposed. First, a theory to estimate the system failure 
probability was developed under the basic assumptions 
that the failure modes arc complexly corr이ated and that 
the sequence of component Etihurc in a given mode is not 
important. According to the consequence of these assump­
tions, a simple rule has been proposed for direct estimation 
of system failure probability from the element or compo­
nent failure probabilities. A model to estimate the 이cment 
or component failure probabilities was formulated by the 
First-Order Second-Moment (FOSM) reliability me由od. 
Finally, the proposed technique was compared to the c니r- 
rent reliability methods (i.c., bound technique and Monte 
Carlo simulation) through three examples: (1) a simple 
portal frame; (2) a six-member truss; and (3) a sixtecn- 
member truss.

From this study, two conclusions are made. First, the re­
sults obtained for the example structures used here indicate 
that the predicted system reliability values agree closely 
with those values predicted by other approaches. Second, 
the proposed te사mique is computationally efficient when 
compared to other methods, especially for the complex 
structures th어 are highly indeterminate and have many 
elements.

Table 9. Comparisons of Reliability Techniques

Type of
Structure

__ Probability of Failure of System
Bounds Technique Monte Carlo Proposed

Lower Upper Sim 니시 ion Technique
Portal Frame 6.12x1 O'6 1.60x1(尸 - 5.84x1 O'6
6-Membcr 

Truss 1.96x10시 6.40x10'1 2 3 3.60x10」 3.59x10°
16-Member 

Truss 2.73* IO* 3.84x10' - 5.04x10'4
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