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Structural Behaviors for Pressurized Fabric Leaning Arches

Jac Ycol Kim
School of architecture. S니ngkyimkwan University. Suwon, Korea

Abstract

In this paper, a press니「ized single vertical arch and a press니「ized leaning arch composed of flexible fabric material are considered. These 
arches have also been considered as a possible s나pport struct니「e for the tent-like struct니res. Two different boundary conditions are considered 
in leaning arches with fixed bases and pinned bases. The behaviors of the leaning arches are investigated for two tilt angles as 15, 30 . For 
each angle, two loading conditions are considered as uniformly distributed load and wind loads. The F.E.M. is 니sed through the all analysis 
procedures. For the results, !oad-deflection relationships, buckling modes, differences between two bo니ndary conditions and deformed 
config나rations are discussed.
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I. INTRODUCTION

The tent-like str니ct니res will be 니sed for many purposes 
including maintenance shelters, 가"craft hangars, and 
medical stations. One of the possible s니pport stmet니res 
being considered is the air-inflatablc ar이]. In order to 
facilitate easy erection the s니pport struct나re of'the tcnt-likc 
structures is to be inflatable. Also, the s니pport structure of 
the tcnt-likc 寸i■너ct니res is to be lightweight and will mo니 

likely be constructed of a thin, woven or braided fabric, 
with an internal bladder to hold the air within.

Sanders and Licpins[l] discussed the behavior of a 
circular membrane subjected to an internal pressure. They 
derived membrane equations for the pressurized toroid 
using nonlinear membrane theory. However, these results 
arc only valid for very thin shells where bending can be 
neglected. Ticlking, ct al. [2] extended Sanders and 
Liepins' theory for toroidal membranes further to account 
for the nonlinearity of the membrane solutions near the 
apex. The authors 니sed a modified linear theory, which is 
based on the non-linear theory but linearized by neglecting 
the meridional stresses effect on the deformation. When 
studying wind load on a tent structure, Krainski[3] used a 
stepped distribution to represent a nonlinear wind 
distrib나tion with press니re on the windward face and 
suction at the top and leeward face. Hou [4] used a non- 
니niform pressure, which varied from a pressure at the 
ground of the windward face to zero at the apex to a 
suction at the ground of the leeward face. In this paper, a 
pressurized single vertical arch and a pressurized leaning 
arch composed of flexible fabric material are considered. 
Fixed boundary is applied to vertical arch and two 
different bo나ndary conditions are considered in leaning 
arches with fixed bases and pinned bases. The behaviors of 
the leaning arches are investigated fbr two tilt angles as 15 
and 30. For each case, two loading conditions as uniformly
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distributed load and wind load arc considered.
For each analysis, a shell 시ement is 나sud. flic 

formulation proccd녀res arc omitted in this paper. The 
external loads arc increased on the str니cturc until one of 
the following situations occurs:

1) A bifurcation point is reached on the load-frequency 
graph

2) A limit point is reached on the load-frcqucncy graph
3) The analysis stops because the incremental load step 

is too small. This is characteristic of local buckling on the 
arches.

If the analysis is stopped due to a bifurcation or limit 
point instability, the final load is referred to as the b냐ckling 
load. If the analysis stops due to the solution diverging, 
then the failure is chic to local buckling or wrinkling.

A bifurcation point is characterized by the load- 
什eq나ency curve passing through a frequency of zero with 
a non-zero slope. A limit point is characterized by the 
load-frequency curve passing through a frequency of zero 
with a zero 이ope.

The arch material is assumed to be a linearly 시astic, 
isotropic material with a modulus of elasticity of 7GPa and 
Poissons ratio of 0.3. Analyses of this type often neglect 
the self-weight of the structures; however, the structure 
니nder consideration is very large. Because of its size, the 
self-weight of the structure may be significant; therefore, it 
is included in the analysis. A density of 1440kg/m3 is 니sed. 
These values are representative of a lightweight woven 
fabric such as Kevlar or nylon.

2. ANALYSIS MODEL

The shape forms parabolic and the equation is as follow.

z(x) = H-(H/V2) x2 (1)

Here, fbr the base with 15 degree tilt angle 0 shown in 
Fig.1(c), height H=16.42m and base width V=8.80m,
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cross-sectional radius r=0.4m and thickness t=0.25mm are 
imposed. And fbr the 30 degree tilt angle 0, height 
H= 14.72 m and base width V=17.0 m are given.

The tilt angle is increased, the height of the leaning 
arches decreases and the base width increases. The 
geometrical shape is shown in Fig.l.

Fig. 1. Geometrical shape of arch(unit:m)

The finite element mesh 니sed in this analysis is created 
using Mathcmatica (Wolfram, 1993). A program that can 
create a generic mesh for any profile, tilt angle, or number 
of elements is desired. The process governing the position 
of any node on the surface of a vertical arch is as follows:

%上브 (2)

8: the angle around the cross section (0 < ^< 2兀) 

m : the number of divisions around the cross section 
j : the jth division around the cross section (0 <7 < m) 
Xii，yij, and 4 : the x, y, and z coordinates of any point on a 
vertical arch

An arch that is created using the equations above can be 
rotated by an angle 9 from the vertical plane into a tilted 
position using the following transformations:

v = tan*1 纠 (11)
〔如丿

X,j=x§ (12)

与=J•对 + 蜀 cos(w -0) (13)

=丿片 + 毒 sin(v-O) (14)

where
Xjj, 丫帀 and Zjj : the coordinates of a leaning arch
W: the angle between the vertical XZ plane and any point 
on a vertical arch
0: the tilt angle from the vertical

A second, leaning arch can be created by finding Kz/ max 
fbr the tilted arch and then copying the original arch across 
the x-z plane at max- The new y-coordinate (Y^ new) 
becomes:

Eg =2匕皿-匕 (15)

3. APPLYING LOADS

Zi =Z(X,.)

河,. =7重의

x- - Xi+r ■ siny/ - cos(|)y

yi} = r. sin。丿

知• = + r . cosy,. - cos如.

(3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)

For every analysis, prior to the application of external 
loads, internal press니re of 500kPa is applied. At the final 
internal pressure, the arch deflects 5.87cm upwards at the 
apex. For further analysis of external loads, the deflection 
is reported as the displacement from the equilibri나m 
position of the pressurized arch.

rnrrn

where
n : the number of divisions along the arc length of the arch 

i: the ith division along the arc length of the arch (0 < z < n) 
Sj: the arc length to the ith point on the arch 
s(): the arc length of the arch
z(x):the function defining the shape of the arch in the 
vertical plane
Xo : the first positive root of z(x)
Xj : the x coordinate of the ith point on the arch and is the 
first positive root of J - z(x)2dx - Sj -0

Fig.2. Arch Model subjected to uniformly distributed load

b) Section of arch

The uniformly distributed snow load is applied as shown 
in Fig.2. In this case, since the load is vertical and 
symmetric, only the deflections in the Z-direction at the 
apex are monitored.

Below equations are introduced as a numerical wind 
load.

r : the radius of the cross section
y : the angle between the plane of a cross section and the 
vertical axis



Structural Behaviors for Pressurized Fabric Leaning Arches 47

-Case 1 (smooth):

k(e)= -0.804 + 0.140 cos 6, +1.380 cos 20
+ 0.490 cos 36>-0.318 cos 4(9

is the third vibration frequency. The frequencies decrease 
as the load is increased. A view of the deflected shape at 
the buckling load in the X-Z plane is shown in Fig.6. It is 
known that bifurcation buckling was occurred(Fig.5).

-Case 2 (rough):
仲9) = -0.258 + 0.488 cos 6 + 0.476 cos 18 
+ 0.328 cos 36^ + 0.10 cos 4。

-Case 3 (beyer):

k(0) = —0.655 + 0.28 cos(9 + 1.115cos 20
+ 0.40 cos 30 — 0.113 cos 40 — 1.027 cos 50

£
-

一
2

0
1

-Case 4 (dischinger):

0匕------------------------------------- ■
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Deflection (cm)

娘)=0.75 cos 0 + 0.15 cos 30 (20) Fig.4. Total load vs. deflection

- Case 5 (girkmann): 50

@9) =—0.526 + 0.253 cos(9 + 0.95 cos 
+ 0.462 cos 30 — 0.189 cos 4。 (21)

- Case 6 (cosine):
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k(9) = cos 9 (22)

These equations lend themselves to finite element 
analysis where the wind pressure can be determined 
numerically for any length along an arch. Fig.3 shows the 
wind distribution as a function of coordinates x by using 
these equations. Case 1 and 2 are presented by Soar[5] 
from wind tunnel test and Case 3, Case 4 and Case 5 are 
presented by engineer who denoted in parenthesis.

First frequency

I
' i ......................

t Second frequency

1 -----------------
' Third frequency

1() 15 20

Frequency (rad'sec)

Fi응.5. Total load vs. frequencies

/ buckling 
k shape

4. VERTICAL ARCH SUBJECTED TO SNOW LOADS
AND WIND LOADS

Fig.3. Wind distributions as a function of x

The load-deflection and load-frequency curves for snow 
loads are shown in Fig.4 and 5, respectively. The load 
deflection curve is slightly softening. In the load-frequency 
plot, the solid line is the first vibration frequency, the 
dashed line is the second frequency, and the dash-dot line

Fig.6. Deflected shape

For the wind loads, it can be proved from the results that 
Case 4 and Case 6 give results that are quite different from 
the other four distributions. These two pressure 
distributions give small vertical deflections ; however, the 
lateral deflections are very large. The large lateral 
deflections are due to the fact that both distributions have 
only pressure on the windward side of the arch and only 
suction on the leeward face of the arch. These two 
distributions are very simple models of wind pressure ; 
however, it appears that they are not realistic when 
compared to the results of pressure distributions which are 
obtained from wind tunnel testing.
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Fig.7. Deflected shape of single arch for rough wind distribution

is shown in Fig.l 1.

厂Y

Fig.8. Deflected shape of single arch for smooth wind distribution

5. LEANING ARCH SUBJECTED TO SNOW LOADS

5.1 15 degree tilt angle with fixed boundary
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Fig.9. Total load vs. deflection
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Fig.10. Total load vs. frequencies

The load is increased until the first vibration frequency 
becomes zero, which occurs at a load of 253kN(56.9kips). 
At the final load, the apex of each arch deflects downward 
45.5cm(17.9in.) from the pressurized equilibrium position, 
the second frequency is 9.35rad/sec, and the third 
frequency is 10.82rad/sec. The load-deflection and load­
frequency curves are shown in Fig.9 and 10, respectively. 
The side view of the displaced shape at the buckling load

Fig. 11. Deflected shape

5..2 30 degree tilt angle with fixed boundary

The load-deflection curve is shown in Fig.12, the load­
frequency curve is shown in Fig.13, the side view of the 
deflected shape at the final load is shown in Fig.14.
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Fig.12. Total load vs. deflection
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Fig.13. Total load vs. frequencies

Fig. 14. Deflected shape

5.3 15 degree tilt angle with pinned boundary

These views of the first three vibration modes are shown 
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in Fig. 15 through 17. Since the first frequency is zero, the 
first mode shape is the buckled configuration./峯

Fig. 15. Buckling mode (twist)

Fig.16. Second vibration mode (longitudinal sway)

/卞
Fig.17. Third vibration mode (side sway)

5.4 30 degree tilt angle with pinned boundary

These views of the first three vibration modes are shown 
in Fig. 18 through Fig.20. Since the first frequency is zero, 
the first mode shape is the buckled configuration.

Fig.19. Second vibration mode (longitudinal sway)

Fig.20. Third vibration mode (side sway)

6. LEANING ARCH SUBJECTED TO WIND LOADS

6.1 15 degree tilt angle with fixed boundary

Case 2(rough) in section 2.4.4 is applied as a wind load. 
The wind load is increased until the pressure is 
11.31kPa(236.2psf).

Fig.21. Wind pressure vs. longitudinal deflection

Fig.18. Buckling mode (twist)

The analysis is stopped at this load because the wind 
pressure is excessive and the behavior of the structure can 
be determined from the loading sequence ; therefore, larger 
loads do not need to be applied.

At this pressure the longitudinal deflection of the arches 
is 56.0cm and the vertical deflection is 4.13cm. The 
pressure- deflection curves are shown in Fig.21 and 22. At 
the final load, the first vibration frequency is 14.0rad/sec, 
the second frequency is 14.4rad/sec, and the third 
frequency is 18.6rad/sec. The first vibration mode of the 
arches is shown in Fig.23.
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Vertical Deflection (cm)

Fig.23. First vibration mode (side sway)

6.2 30 degree tilt angle with fixed boundary

Fig.24 shows the pressure-longitudinal deflection curve.
Fig.25 shows the pressure-frequency curves.

Deflection (cm)

Fig.24. Wind pressure vs. longitudinal deflection
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Fig.25. Wind pressure vs. frequencies

6.3 15 degree tilt angle with pinned boundary

The press낞re-deflection curves are shown in Fig.26 and 
27. At the final load, the first vibration frequency is 
9.07rad/sec, the second frequency is 9.95rad/sec, and the 
third frequency is 11.62rad/sec. The pressure-frequency 
curves for the first and second vibration modes cross at a 

pressure of approximately 2.8kPa. The first vibration mode 
of the arch is shown in Fig.28.

Fig.26. Wind pressure vs. longitudinal deflection

Vertical Deflection (cm)

Fig.27. Wind pressure vs. vertical deflection

6.4 30 degree tilt angle with pinned boundary

The pressure-deflection curves are shown in Fig.29, 
where the solid line gives the longitudinal deflection and 
the dashed line gives the vertical deflection. Finally, the 
first vibration mode of the arch is shown in Fig.30.

Fig.29. Wind pressure vs. deflection
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7. RESULTS SUMMARY FOR LEANING ARCHES

A summary of the results for the leaning aiches tilted at 
15° and 30° fbr fixed and pinned bases and fbr three load 
distributions is shown in Fig.31 to Fig.36. In Figures, a 
first frequency of zero signifies that the arches buckled at 
the load specified by "final load." 
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Fig-31. Total load vs. vertical deflection for leaning arches 
with hill snow
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Fig.32. Total load vs. first frequency for leaning arches with full snow
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Fig.33. Total load vs. vertical deflection fbr leaning arches 
with half snow
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Fig-36. Wind pressure vs. first frequency for leaning arches with wind

Cross-sectional deformations were taken into account 
during the analyses presented in this paper. As expected, 
cross-sectional deformations were significant.

Fig.37. Displaced cross-section at apex under full snow load

Fig.38. Displaced cross-section at apex (hiring side sway vibration mode
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Two typical displaced cross sections are shown in Fig.37 
and 38. Fig.37 shows the displaced cross section at the 
apex for arches 나ndcr a uniformly distributed load of 
143kN, with pinned bases, and tilted at 15. It can be seen 
that the arches come into further contact with each other, 
causing the once circular cross section to become oval­
shaped. The cross-sectional defomiation of the toroid is 
nearly identical with that of toroidal finite element model 
presented by Sanders and Licpins(1963).; however, the 
finite clement model developed in this paper(Fig.37) 
moves upwards at the apex. This upward movement is 
most likely due to the fixed ends of the model. Fig.39 
shows the displaced shape of the cross section at the apex 
for the side sway vibration mode. This fig나re is for 
leaning arches with pinned bases, tilted at 15, and with 
only an internal press니re of 500kPa. This figure shows 
how the cross section can change as the arches move.

8. CONCLUSIONS

Various structural behaviors for the arches arc 
investigated. Bifurcation buckling is occurred in the 
vertical arch(Fig,5). Limit tackling occurs for uniformly 
distributed load on the leaning arches with pinned bases 
tilted at both 15 and 30 ; however, buckling only occurred 
for uniformly distributed load on the leaning arches with 
fixed bases tilted at 15(Fig.33). For wind load cases, no 
buckling occurs in the range of loads considered(Fig,37). 
The boundary conditions of the arches have a significant 
impact on the behavior of the leaning arches. Fixed bases 
cause the structure to be much stiffer, stronger, and more 
stable. The vibration freq니cncics arc higher for fixed bases 
when compared to the arches with pinned bases. The 
deflections are also smaller for the arches with fixed bases.

The tilt angle has a less significant impact on the 
behavior of the leaning arches. For the uniformly 
distributed load, the arches tilted at 30 have larger vertical 
deflections than the arches tilted at 15 ; however, the 
arches with a 15 tilt angle have larger longitudinal 
deflections than the arches tilted at 30. From the vibration 
modes, it can be shown that the first vibration mode for the 
arches with pinned bases is often a twisting mode ; 
however, the first vibration mode for the arches with fixed 
bases is a side sway mode. This difference in vibration 
mode shows that the lack of restraint at the pinned bases 
causes the pinned arches to be much weaker in twisting 
than the fixed arches. Wrinkling of the arches occurred 
near the final load fbr many of the load cases. This may 
suggest that the wrinkling load has been passed. The finite 
element model, however, did not develop fold lines like 
those that might be expected when a thin fabric loses its 
tensile pre아！ess. The leaning arch module is a very 
efficient structure. A single arch with fixed bases buckles 
at a total load of 45kN, but a pair of leaning arches tilted at 
15 with fixed bases buckles at 253kN. Adding a second 
arch increases the load carrying capacity of the structure 
by 550%. Only two types of loads have been considered to 

act on the struct니re. The two loads studied are the most 
common ; however, other load types should be considered, 
such as loads perpendicular to the length of the arches, or 
loads which act at an oblique angle to the arches. And, this 
paper is dealt with the linearly elastic, isotropic, and 
homogeneous material, however, different properties in 
vario나s directions, which may significantly impact the 
behaviors of the structures should be considered. If tents 
arc designed using leaning arches, the leaning arch 
str니cture should be optimized to obtain a shape, tilt angle, 
cross section, and internal pressure which has large critical 
loads, small deflections, and a low weight.
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