Last Glacial Maximum-Holocene Variability in Geochemical Records of a Core Sediment from the Southern Part of the Ulleung Basin, East Sea: Implications for Paleoceanographic Changes

동해 울릉분지 남단 주상퇴적물에 대한 최종빙기-홀로세간의 지화학적 기록 변화: 고해양환경 변화

  • Huh, Sik (Marine Environmental and Climate Change Laboratory, Korea Ocean Research and Development Institute) ;
  • Han, Sang-Joon (Marine Environmental and Climate Change Laboratory, Korea Ocean Research and Development Institute) ;
  • Hyun, Sang-Min (Marine Environmental and Climate Change Laboratory, Korea Ocean Research and Development Institute)
  • 허식 (한국해양연구원 해양환경 기후연구본부) ;
  • 한상준 (한국해양연구원 해양환경 기후연구본부) ;
  • 현상민 (한국해양연구원 해양환경 기후연구본부)
  • Published : 2001.05.31

Abstract

To understand paleoceanographic environmental changes in the Esat Sea during the transitional period between Holocene and last glacial maximum, geochemical high resolution study was conducted by using a piston core(95PC-1) samples collected from the southernmost part of the Ulleung Basin. Geochemical results reveal that major distinctive paleoceanographic variations in transitional period are prominent. Major elemental concentrations show distinctive variations between glacial and Holocene suggesting changes in sediment supply. $TiO_2/Al_2O_3$ ratio of the sediment indicates different sediment composition between Holocene and glacial period. The content of total organic carbon ranging from 0.5% to 4% during transitional period. These vslues showed 2-4 times and two times higher than those of last glacial and Holocene, respectively. The C/N ratios deduced from organic matters exceed10 during transitional period suggesting terrigenous organic matter are supplied from continent, especially during last glacial maximum. Carbonate contents are relatively stable during Holocene and last glacial maximum with gradual decrease during glacial period with high fluctuation during transitional period. The variations of chemical index of weathering (CIW) also show a distinctive variation between glacial and Holocene, which is coincident with those of carbonate and organic carbon. The grain size distribution indicates that the difference content of silt fraction during Holocene and glacial period is closely related with climatic effect during glacial period. Therefore geochemical differences in sediment composition between Holocene and last glacial maximum is thought to be related to paleoceanographic, sea-level change and local paleoclimatic changes.

최종빙기와 흘로세 사이의 전이기에 일어난 동해의 고해양환경 변화를 이해하기 위하여 울릉분지 최남단 대륙사면에서 얻어진 주상시료(95PC-1)퇴적물에 대한 지화학적 고분해 연구를 하였다. 지화학적 결과는 주요 고행양학적변화가 이 전이기에 뚜렷하게 일어나고 있음을 밝히고 있다. 주요원소를 분석한 결과 최종빙기와 홀로세 사이에 뚜렷한 퇴적물의 조성변화를 보이고 있으며 이는 퇴적물의 공급변화가 수반되었음을 지시하고 있다. 퇴적물 중의 $TiO_2/Al_2O_3$는 흘로세와 최종빙기의 퇴적물 조성이 다름을 지시하고 있다. 유기탄소 함량도 약 $0.5{\sim}4%$ 정도의 폭으로 변화하고 있으며 이러한 변화는 평균적인 최종빙기와 간빙기(흘로세)의 값과 비교했을 때 각각 $2{\sim}4$배, 2배 정도 증가하여 전이기에 생물생산이 증가한 것임을 알 수 있다. 대륙기원 유기물의 유입을 지시하는 C/N비도 이 전이기를 중심으로 10이상을 보이고 있어 유기물이 인근 대륙으로부터 유입되었음을 지시하고 있으며, 특히 최종빙기 동안에는 활발하게 대륙으로부터 유기물이 유입되었음을 알 수 있다. 탄산염 함량변화는 흘로세 기간동안에는 비교적 안정하여 약 2.5%전후의 값을 보이고 있다가 전이기에 큰 폭의 변화를 보이면서 최종빙기에는 점진적으로 감소하는 경향을 보이고 있다. 퇴적물의 화학원소에 근거한 풍화지수(CIW)를 조사해본 결과 약 1만년을 경계로 뚜렷하게 변화하고 있으며 이러한 점은 유기물과 탄산염에 나타난 전이기와 잘 일치하고 있다. 입도분석 결과 나타난 최종빙기와 흘로세 간의 실트질 퇴적물의 함량차이는 빙기동안에 강해진 기후요소와 밀접히 관계되는 것으로 생각된다. 따라서 전이기에 나타나는 지화학적 기록변화는 해수면 상승과 결부된 해양환경변화 및 지역적인 기후변동과도 밀접히 관계되고 있음을 지시한다.

Keywords

References

  1. 한국 대수심 해역의 지구적 해저환경 연구(2-3차년도)
  2. 동해분지의 해양환경 변화와 지구조 진화 연구(3차년도)
  3. Mar. Geol. v.162 Origin and paleoceanographic sinificance of laminated muds from the Ulleung Basin East Sea (Sea of Japan) Bank, J.J.;S.K. Chough;S-J. Han.
  4. Ocean Res v.19 Origin of Laminated muds and its paleocenographic implication:Ulleung Basin, East Sea(Sea of Japan) Bahk, J.J.;S.K. Kim.;S.J. Han.;S.K. Chough
  5. Chem, Geol v.13 Ti/Al ratio as caemical indicator of paleoenvironment-note. Bhatt, J. J.
  6. Geochim. Cosmochim. Acta. v.13 Chemistry of Pacific pelafic sediments. Golderg, E. D.;G.O.S. Arrenhius.
  7. Paleogeogr. Paleoclimatol. Paleoecol. v.108 Late Cenozoic records of aeolian quartz in the Sea of Japan (ODP Leg 128,Sites 798 and 799)and paleoclimate in Asia. Dersch, M.;R. Stein.
  8. Paleogeo. Paleoclimat. Paleoecolo v.156 Detailed Japan Sea paleocenoagraphy during the last 25kr: constraints from AMS dating and [sup18]O of planktonic foraminifera. Gobarenki, S.A.;Southon, J.R.
  9. Sediment. Geol v.55 The CIW index: A new chemical index of weathering. Harnouis, L.
  10. Ocean Res. v.19 Paleoenvironmints near Ulleung and DOk Islands in the Ulleung Basin East Sea of Korea. Han, S.-J.;Huh. J.-J.;Bank, J.H.;Chun, S.-H.;Kim, H.-J.;Woo,H.-J.;Lee,G.-H.;Hong,D.-H.;Shin;H.-I. Yi
  11. Nature v.340 A direct link between the China loess and marine δ[sup18]O records:Aeolian Flux to the North Pacific Hoven, S.A.;D.K. Rea.;N.G.Pisias.;N.J.Shackelton.
  12. J. Korean. Soci. Oceanofr. v.33 Major element changes in the upper Quatermary sediment of the East Sea (Sea of Japan) : Their implications for the onset of Holocene. Hyun, S.;S.-J. Han.;J.-J. Bahk.
  13. Bull. Sci. Mus. Ser. C v.2 Lithology and planktonic foramin ifera of the Sea of Japan piston core. Ichikura, M.;H. Ujiie.
  14. Paleoceanography v.14 Organic molecular and carbon isotopic records of the Japan Sea over the past 30kyr Ishiwatari, R. K.;Yamada, K.;Matsumoto, M.;Houtatsu;H. Naraoka
  15. Umi to Sora v.65 Relation between increase of coral and atmopheric carbon dioxide concentration. Kano, Y.
  16. Ocean Res. v.19 Oxygenation level o deep water in the East Sea (Sea of Japan) since the late Plesitocene:trace metal indicator. Kim, S.H.;G.H. Hong.;C.S. Chung.;S.-J. Han.
  17. Proc. ODP Sci. Results v.127 no.128 Chemistry of race earth and other trace elements in sediment from Sites 798 and 799 Japan Sea. Manai, Y. R.;Matusmoto, Y.;Watanave. T.;Tominaga
  18. Earth Planet. Sci. Lett. v.32 The geochemistry of transitional sediments recoverd from the Garlpagos hydrothermal mounds field during DSDP Leg 70-implications for mound formation. Moorby, S.A.
  19. Deep-Sea Res. v.26 Productivity, sedimentation rate and sedimentary organic carbon in the ocean 1. Organic carbon preservation. Muller, P.J.;E. Suess.
  20. Nature v.299 Early Proterozonic climates and plate motions inferred from major element chemistry of lutites. Nesbitt, H.W.;G.M.;Young.
  21. Paleoceanography v.6 Paleoenvironmental changes in the Japan Sea during the last 85000 years. Oba, T.;M. Kato.;H. Kitazato.;I. Koizumi.;A. Omura.;T. Sakai;T. TAKAYAMA
  22. Ocean Res. v.19 East Sea (Japan Sea) climatic event during the Younger Dryas and last deglaciation. Park, B. K.;I.C. Shin.;S.-J. Han.
  23. Paleogeogr. Paleoclimatol. Paleoecol. v.79 Aspects of atmospheric circulation: the Lste Pleistocene (0-950000 yr) record of eolian deposition in the Pacific Ocean. Rea, D. K.
  24. Mar. Geol. v.49 Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments Rea, D.K.;T.R. Janecek.
  25. Sedimentation as a Three-Component System. Ricken, W.
  26. Norsk. Geol. Tidsskr. v.52 Mineralogy and geochemistry of Quaternary clays in the Numedal area, southem Norway Roaldest, E.
  27. Geochim. Cosmochim. Acta. v.40 Titanium in some carboniferous sediment from Great Britain. Spears, D. A.;R. Kanris-Sotirios.
  28. Paleogeo. Paleoclimatol. Paleoecolo v.108 Quaternary organic carbon cycles in t Japan Sea (ODP-Site 798) and their paleoceanographic implications Stax, Rainer;Stein Ruediger
  29. Geo Marine Lett. v.10 Organic carbon/sedimentation rate relationship and its paleoceanographic significance for marine sediments. Stein, R.
  30. Lecture Notes in Earth Science Accumulation of organic carbon in marine sediments. Stein, R.;Smodev, B.(ed);G.M. Fredman(ed),;H.J. Neugerbauer(ed);A. Seilacher(ed)
  31. Proc ODP Sci Results v.127 no.128 Correlation of dark and light layers, the origin of their cyclicity in the Quaternary sediments from the Japan Sea. Tada, R.;I. Koizumi.;A. Cramp;A. Rahman.
  32. Quat. Res. Japan. v.36 Paleoenvironmental changes in and around the Japan Sea since the last glacial period. Tada, R.
  33. Geochim. Cosmochim. Acta. v.47 Geochemistry of loess, continental crust composition and crustal model ages. Taylor, S.R.;S.M. McLennan;M.T. McCulloch
  34. Trans. Palaeont. Soc. Japan, New Ser. v.9 Holocene to uppermost Pleistocene palnktonic foraminiferas in a piston core from off the San'sdistrict, Sea of Japan. Ujiie, H.;M. Ichikura.
  35. Coral reefs v.11 Coral reefs:source of sink of atmopheric CO₂? Ware, R.J.;S.V. Smith.;M.L. Reaka-kudla
  36. J. Sediment. Petrol. v.45 Eolian contributions to marine sediments. Windom, H.L.
  37. Korean Soc. Oceanogr. v.30 Paleoenvironments in western part of the East Sea, Korea, during the late Quaternary using benthic foraminifera. Woo, H.J.;H.K. Cheong, S.-J.;Han, H.D. Chang;S.H. Yoon.