남태평양의 영양염, 엽록소, 일차생산성 분포

The Distributions of Nutrients, Chlorophyll-a, and Primary Productivity in the South Pacific Ocean

  • 김동엽 (한국해양연구원 극지연구본부) ;
  • 심정희 (한국해양연구원 극지연구본부) ;
  • 송환석 (부경대학교 해양학과) ;
  • 강영철 (한국해양연구원 극지연구본부) ;
  • 김동선 (한국해양연구원 극지연구본부)
  • Kim, Dong-Yup (Polar Research Laboratory, Korea Ocean Research and Development Institute) ;
  • Shim, Jung-Hee (Polar Research Laboratory, Korea Ocean Research and Development Institute) ;
  • Song, Hwan-Seok (Department of Oceanography, Pukyong National University) ;
  • Kang, Young-Chul (Polar Research Laboratory, Korea Ocean Research and Development Institute) ;
  • Kim, Dong-Seon (Polar Research Laboratory, Korea Ocean Research and Development Institute)
  • 발행 : 2001.02.28

초록

2000년 2월에 남태평양에서 수심 200m까지 수온, 염분, 용존산소, 영양염, 엽록소, 일차생산성의 수직분포를 조사하였다. 연구해역(남위 $24^{\circ}{\sim}41^{\circ}$, 서경 $80^{\circ}{\sim}168^{\circ}$)은 물리적으로 크게 두 해역으로 나누어진다. 서경 $110^{\circ}$을 경계로 동쪽해역에서는 수심 200m이하의 중층수가 표층으로 활발히 용승하였고, 서쪽해역에서는 중층수의 용승이 거의 일어나지 않았다. 따라서 해수의 화학조성도 다르게 나타났다. 동쪽해역에서는 영양염 농도가 높은 중층수의 용승에 의해 표층 100m에서 질산염+아질산염과 인산염 농도가 서쪽해역에 비해 상당히 높게 관측되었지만, 중층수의 용승에도 불구하고 규산염 농도는 오히려 서쪽해역보다 낮았다. 영양염 중에서 식물플랑크톤의 일차생산성에 영향을 미치는 주요 원소도 해역에 따라 달랐다. 동쪽해역에서는 규소에 의해 일차생산성이 가장 큰 영향을 받는 반면, 서쪽해역에서는 질소가 일차생산성에 가장 큰 영향을 미쳤다. 중층수의 용승에 의해 영양염 농도의 큰 차이에도 불구하고, 식물플랑크톤의 일차생산성은 두 해역이 서로 비슷한 값을 보였으며, 수심 200m까지 합한 엽록소 총량은 오히려 동쪽해역에 비해 서쪽해역에서 2배 가량 높게 측정되었다.

The vertical distributions of temperature, salinity, dissolved oxygen, nutrients, chlorophyll, and primary production were investigated within the top 200m water depth in the south Pacific Ocean in February,2000. The study area ($24^{\circ}-41^{\circ}S,\;81^{\circ}-168^{\circ}W$) can be hydrologically divided into two regions. Upwelling was actively occurring in the eastern region of the $110^{\circ}S$ line, meanwhile it was not active in the western region. Accordingly, chemical properties in the surface waters were different between the two regions; nitrate+nitrite and phosphate concentrations were much higher in the eastern region than in the western region due to the active upwelling, but silicate concentration was higher in the western region. Among the nutrients, the major element influencing primary production was also different between the two regions; silicon would be a major element influencing primary production in the eastern region, but nitrogen may act as a major element for primary production in the western region. Primary production showed similar values in the two regions in spite of the large differences of nutrient concentrations in the surface waters, but the total chlorophyll integrated within the 200 m water depth was almost twice as much as in the western region than that in the eastern legion.

키워드

참고문헌

  1. Limnol. Oceanogr. v.36 Regulation of primary productivity rate in the equatorial Pacific Barber, R.T.;F.P. Chavez
  2. Deep-Sea Res. Ⅰ v.37 Anomalous nutrient distribution on the equatorial Pacific in April 1988: evidence for rapid biological uptake Bender, M.L.;M.J. McPhaden
  3. Deep-Sea Res. Ⅰ v.44 Biomass, growth rates and limitation of Equatorial Pacific diatoms Blain S.;A. Leynaert;P. Treguer;M.-J. Chretiennot-Dinet;M. Rodier
  4. Tracers in the Sea Broecker, W.S.;T.-H. Peng
  5. J. Phycol. v.21 The Si:C:N ratio in marine diatoms: Interspecific variability and the effect of some environmental variables Brzezinski, M.A.
  6. Dee0-Sea Res. Ⅰ v.42 The annual silica cycle in the Sargasso Sea near Bermuda Brzezinski, M.A.;D.M. Nelson
  7. Deep-Sea Res. Ⅰ v.34 An setimate of new production in the equatorial Pacific Chavez, F.P.;R.T. Barber
  8. Deep-Sea Res. Ⅰ v.37 Phytoplankton taxa in relation to promary production in the equatorial Pacific Chavez, F.P.;K.R. Buck;R.T. Barber
  9. J. Geophy. Res. v.97 Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific Cullen, J.J.;M.R. Lewis;C.O. Davis;R.T. Barber
  10. Deep-Sea Res. Ⅰ v.42 The role of a soloca pump in driving new production Dugdale, R.C.;F.P. Wilkerson;H.J. Minas
  11. Nature v.391 Silicate regulation of new production in the eastern equatorial Pacific Ocean Dugdale, R.C.;F.P. Wilkerson
  12. Global Biogeochem. Cycles v.13 Siliconnotrogen coupling in the equatorial Pacific upwelling Dunne, J.P.;J.W. Murray;A.K. Aufdenkampe
  13. J. Geophys. Res. v.97 Nitrate utilization by plakton in the equatorial Pacific Epply, R.W.;E.H. Renger
  14. Climate Change IPCC
  15. Deep-Sea Res. Ⅱ v.42 $228^Raderived$ nutrient budgets in the upper equatorial Pacific and the role of "new" silicate in limiting productivity Ku, T.-L.;S. Luo;M. Kusakabe;J.K.B. Bishop
  16. Science v.234 Vertical nitrate fluxes in the oligotrophic ocean Lewis, M.R.;W.G. harrison;N.S. Oakey;N.S. Oakey;D. Herbert;T. Platt
  17. Deep-Sea Res. Ⅱ v.42 Plankton productivity and biomass in the western equatorial Pacific: Biological and physical controls Mackey, D.J.;J. Parslow;H.W. Higgins;F.B. Griffiths
  18. Deep-Sea Res. v.22 Mixing and oceanic productivity McGowan, J.A.;T.L. Hayward
  19. Mar. Chem. v.35 Cycling of biogenic solica within the upper water column of the Ross Sea Nelson, D.M.;J.A. Ahern;L.J. Gerlihy
  20. A Manual of Chemical and Biological Methods for Seawater Analysis A Manual of Chemical and Biological Methods for Seawater Analysis Parsons, T.R.;Y. Maita;C.M. Lalli
  21. Mar. Biol. v.84 Role of sinking in diatom life-history cycles: Ecological, Evolutionary and geological significance Smetacek, V.
  22. Deep-Sea Res. Ⅱ v.46 Sporadic silicate limitation of phytoplankton productivity in the subarctic NE Pacific Wong, C.S.;R.J. Matear