플라스틱 단하지 보조기와 신발 착용이 편마비 환자의 정적 선자세 균형에 미치는 영향

Effects of Plastic AFO and Shoes on Static Standing Balance in Hemiplegic Patients

  • 김중휘 (영남대의료원 물리치료실) ;
  • 김중선 (대구대학교 재활과학대학 물리치료학과)
  • Kim, Joong-Hwi (Department of Physical Therapy, Yeungnam University Medical Center) ;
  • Kim, Chung-Sun (Department of Physical Therapy, College of Rehabilitation Science, Teagu University)
  • 발행 : 2001.09.24

초록

In the patients with hemiplegia caused by stroke and TBI. postural sway is increased and open displaced laterally over the non-affected leg, reflecting asymmetry in weight bearing on lower extremities during standing balance. Recovery of symmetric weight bearing and postural stability is an important aim in physical therapy. Plastic AFO has been used for hemiplegic patients in order to help their abnormal walking patterns. Past studies have mainly focused on the AFO influences on hemiplegic walking patterns without balance function approaches. The purpose of this study was to identify the immediate effects of plastic AFO and shoes on the static balance in hemiplegic patients. The scale for static balance were weight bearing on affected leg(%), sway area(mm2), sway path(mm), maximal sway velocity(mm/s), anteroposterior sway angle($^{\circ}$ ), and lateral angle($^{\circ}$ ). Seventeen hemiplegic patients participated in this study: 13 men and 4 women, with an average age of 50.18 years. Static balance was measured using BPM(balance performance monitor; dataprint software version 5.3) under four standing condition namely bare-foot standing. standing in shoes, standing with AFO, and standing in shoes with AFO. In order to assure the statistical significance of the results, an one-way ANOVA, the independent t-test. and a pearson's correlation were applied at the .05 level of significant. The results of this study were as follows: 1) There were statistically significant differences in weight bearing(%) on the static balance between affected leg and non-affected leg(p<.01). 2) There were statistically significant differences in sway reverse frequence(Hz) in standing with AFO between affected leg and non-affected leg(p<.05). 3) Sway area(mm2) on standing in shoes with AFO was lower than bare-foot standing(p<.05), Lateral sway angle($^{\circ}$ ) on standing in shoes with AFO was lower than bare-foot standing and standing in shoes(p<.05). 4) Weight bearing in affected leg was not significantly correlated with postural sway.

키워드