Journal of Digital Contents Society (디지털콘텐츠학회 논문지)
- Volume 2 Issue 2
- /
- Pages.157-166
- /
- 2001
- /
- 1598-2009(pISSN)
- /
- 2287-738X(eISSN)
Contents-based Image Retrieval Using Regression of Shape Features
모양 정보의 회귀추정에 의한 내용 기반 이미지 검색 기법
- Published : 2001.12.01
Abstract
In this paper we propose a feature vector extraction technique using regression of shape features for the content-based image retrieval system. The proposed technique can reduce the number of dimensions of a feature vector by converting the extracted high-dimensional feature vector into a specific n-dimensional feature vector. This paper shows how to resolve the 'dimensionality curse' problem by reducing the number of dimensions of a feature vector, and shows that the technique is more efficient than the conventional techniques for the practical image retrievals.
본 논문은 내용 기반 이미지 검색 시스템에서 이미지의 위치 및 모양 정보에 의한 회귀선을 추정하여 효율적으로 특징 벡터 추출함과 동시에 같은 도메인상의 특징 벡터가 일정 수준보다 많아질 경우 효율적으로 특징 벡터의 차원을 줄이는 기법을 제안한다. 특히, 특징 벡터의 차원을 줄이는 제안된 기법은 특징 벡터의 수에 관계없이 특정한 n개의 특징 벡터로의 변환이 가능하다. 본 논문에서 제안된 기법들은 실제 내용 기반 이미지 검색 시스템의 구현을 통해 기존의 방법보다 효율적인 검색은 물론 다차원 특징 벡터를 특정 n차원의 특징 벡터로 변환함으로써 다차원 색인 기법이 가지고 있는 가장 큰 단점인 '차원의 저주' 문제를 근본적으로 해결할 수 있는 방법임을 보인다.
Keywords