TWISTED HOPF COMODULE ALGEBRAS (2)

  • Received : 2001.06.22
  • Published : 2001.07.18

Abstract

Suppose that Hand K are paired Hopf algebras and that A is an H - K - bicomodule algebra with multiplication which is a left H-comodule map and is a right K-comodule map. We define a new twisted algebra, $A^{\tau}$ and define $M^{\tau}$ for $M{\in}M_A^K$. We find an equivalent condition for $M^{\tau}{\in}M_{A^{\tau}}^K$. We show that the above defined twisted multiplication is the special case of Beattie's twist multiplication. We show that if K is commutative, then A is an H-module algebra and show that if $H^*$ is cocommutative then the construction of smash product appears as a special case of the new twist product.

Keywords