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A Shock Stable Roe Scheme
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1. Introduction

It is essential that a numerical representation of
inviscid fluxes, namely the numerical flux function,
guarantees the properties of accuracy and
robustness in computational fluid dynamics (CFD).
The Flux Difference Splitting (FDS) scheme is one
of the most successful groups among the various
schemes, and is widely used and studied. The FDS
schemes follow the idea of Godunov [1] and utilizes
the Riemann problem locally. Roe’s FDS [2], Osher’s
one [3] and HLLEM [4] are classified into this family.
These FDS contact

discontinuity -and give good resolution for the

schemes can capture

boundary layer in viscous flow calculation.
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Despite these properties and the good shock
capturing property, some disastrous failing is also
found in certain problems. This pathological
behavior, named 'carbuncle phenomenon’, was first
observed by Peery and Imlay [5] for blunt body
computation with Roe’s FDS. The carbuncle
phenomenon consists of a protuberant shock profile
obtained when a supersonic flow is calculated over
a blunt body. The attempts to cure the shock
instability can be categorized into two groups. One
is to use an entropy fix and the other to use a
dissipative counterpart scheme.

Quirk [6] noticed that some schemes that have
the property of good capture of contact discontinuity
show the shock instability, and some schemes that
are free from the shock instability do not capture
contact discontinuity. Thus, he suggests that in
shock region, a dissipative scheme (HLLE) should
be used while a less-dissipative scheme (Roe's
FDS) should be used elsewhere. In order to flag
the cell interface where the dissipative scheme is
needed, a sensor based on pressure gradient is used.
Wada and Liou [7], by the same philosophy-, suggest
this flagging procedure but they used a sonic point
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for the flag. For a less-dissipative scheme
AUSMDY is used, and for a dissipative scheme,
Hinel FVS is adopted. This cure is very efficient,
as demonstrated by the results reported in [6,7].
However, this kind of approach always needs a
counterpart that stabilizes the original flux function,
and the selection itself is a critical problem. An
inadequate counterpart may easily compromise the
accuracy of the numerical solution, especially in the
case of hypersonic flow.

An entropy fix to the linear field is to limit the
minimum value of the wave speed, and consequently
adds numerical dissipation to damp out spurious
oscillation. Peery and Imlay [5] proposed an
anisotropic function for the entropy fix, and Lin [8]
proposed an isotropic correction function using a
pressure gradient sensor. This entropy fix
successfully cured the shock instability. However,
this achievement critically depended on where and
how much dissipation was added. Improper entropy
fix may broaden the shock wave profile and/or
deteriorate the boundary layer resolution. These two
methods are the same in the sense that dissipation
is added to the original scheme, and both need the
detecting procedure to flag the cell interface where
a tuning parameter usually appears.

So far, it is believed that the scheme that captures
contact discontinuity, ie.,
dissipation in stationary contact discontinuity,
cannot avoid the shock instability and the only way
to prevent the shock instability is to add enough

that has vanishing

dissipation to damp out oscillation. However, Liou
[9] observed that all the tested numerical flux
functions that suffered from the shock instability
have a term depending on pressure difference in
the mass flux, and those that are free from the shock
instability are independent of pressure difference
in the mass flux, finally reaching the following
conjecture, ' The condition D'+0,V M , in the mass
flux is necessary for a scheme to develop, as t
increases, the shock instability as manifested by
the odd-even

decoupling and carbuncle

phenomenon. On the other hand, the condition

D?’=(,V M is sufficient for a scheme to prevent the

shock instability from occurring.” This analysis
shows that it is possible to devise a flux function
free from the shock instability, with vanishing
dissipation in capturing contact discontinuity.

The present study aims at the design of a new
flux scheme that is free from the shock instability.
We select Roe’s FDS as the basic scheme. Following
Liou's conjecture, we focus on the treatment of the
pressure term in the mass flux.

The paper is organized as follows. As a brief
review, numerical examples with the shock
instability are presented in Section 1. In Section 2,
we present the modification procedure of Roe’s flux
function and propose Roe with Mach number-based
function (RoeM) schemes. In Section 3, we present
the numerical results and discuss the properties of
the schemes proposed in Section 2. Finally,
concluding remarks are given.

2. Shock Instability

1.1 Quirk’'s test

In order to judge whether a scheme is shock stable
or not, Quirk [6] presents a simplified test case
named ‘odd-even decoupling’, a planar moving
shock in a duct where a centerline grid is perturbed.
The computational mesh has a nominally uniform
grid of 20%800 cells with unit spacing, the centerline
of which is perturbed from that of a perfectly uniform
mesh in the following manner:

Yy t1074, for j even
Yi R 7. mid ’
i ( Y, g — 1074, for j odd

The shock wave is traveling with a Mach number
M,=6.0. For this calculation, Roe’s FDS is used.
The result is presented in Fig. 1, which shows
density contour after 300 iterations with the CFL
number of 0.5. As the shock propagates downstream,
perturbation grows from the center where the grid
is perturbed, and eventually the planar shock breaks

down.
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1.2 Double Mach reflection
Another the shock
observed when a plane shock wave is reflected

instability behavior is

from a ramp in the Double-Mach Reflection
(DMR) regime. The principal Mach stem is so
severely kinked that an unphysical triple point
appears. This pathological

Density Contour  (Roe's FDS)
Iteration Number = 300

Fig. 1 Quirk’s test

Density Contour of Roe’s ¥DS
Kinked Mach Stewm on 400x400 Mesh
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Fig. 3 Carbuncle phenomenon

behavior is named the kinked Mach stem. This
test consists of a 30" ramp and a moving
shock with M,=5.5. In Fig. 2, density contour
of Roe’s FDS on a 400x400 mesh is shown.
The incident shock wave breaks down and the
Mach stem protrudes like a beak at the wall.

1.3 The carbuncle phenomenon

The carbuncle phenomenon was first reported
by Peery and Imlay [5] for blunt body flow
computation. We include in Fig. 3 pressure
contour and shock profiles along the stagnation
line of a half cylinder. The free stream Mach
number is 80, the mesh size is 65x%113 and
Roe’s FDS is used in the first-order accuracy.
Figure 3 shows the unsymmetrical behavior

and protuberance of bow shock.

2. Improved Roe Scheme

2.1 Roe’'s flux function
The governing equations of inviscid flow in
two-dimension are as follows:

1)

Q JE 3 _
3t " Tox oy 0 (

=

where the state vector and flux vectors are

p Q)u pu

_| Pu | Pu Dl oot Puw
Q pv |’ puv | pvi+p 2

pe, puH pvH

The equation of state has the form as follows:
p=(v—1)pe=(\'—l)P[e -—l(uZﬂJZ)] 3)
s 2 il

where 7 is the specific heat ratio and has the
value of 1.4 for a perfect gas.

The numerical flux of Roe’'s FDS [2] at the cell
interface is written as follows:

F

Jjt

=—2L[F,-+F,¢,—|A|AQ] (€}

robe

In order to make analvsis easier, we rearrange
the flux function of Roe’s FDS in another form in

the subsonic region as follows:
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U indicates contravariant velocity and #,, n, are
unit normal vector components at the cell interface.
~indicates Roe-averaged values at the cell interface.
In the above expression, 4p exists only in the last
term B4Q, which is a kind of anti-diffusion term
that enables Roe’'s FDS to capture contact
discontinuity exactly and is thought to trigger the
shock instability. This will become obvious when
Roe’s FDS is compared with HLLE scheme.

2.2 Cure for the shock instability

It is well known that HLLE scheme cannot
capture contact discontinuity but is free from the
shock instability. The numerical flux of HLLE is

written as follows:

Fi 4 =—2L[F,-+F,-H— M(F;\—F;)
+& ®-1)4Q]

(6)

where Roe-averaged values are used for the
non-linear wave speeds. Equation (6) is
identical to Eq. (5) except the last term B4Q
in Eq. (5). As mentioned before, B4Q enables
Roe’s FDS to capture contact discontinuity and
triggers the shock instability.

In the present paper, it is suggested that the
dissipation coefficient depending on pressure
difference in continuity equation, D’, is
modified as the following in order to control

density fluctuation in the mass flux:

h=1 _mln(Pi.H-‘zL' Pi—-%.i’ Pu‘ZL.i’ P.u—zl,,'« N Pi-+—%,i+l)

(7b)
o bij  Pij+1 )
P"»/'*% mm( bije1’ Dij (7¢)

Figure 4 shows the dissipative coefficients in
the case where h has the value of unity. The
function f and D’ will become zero when the
cell interface Mach number is zero. It is noted
that the dissipation coefficient of pressure is
balanced with that of density.
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Fig. 4 Dissipative coefficients

Considering the odd-even decoupling problem
defined in [6], we can examine how Roe’'s FDS
with the function f evolves the sawtooth-type
data. We assume that the 2-D computational
mesh is uniform and the discrete solution at

time ¢” is given by
pi=p+ 8" pj=p+ p"uf=utv =0’ (8a)

if j is even and by
p=p- 3" pJ=p- pruf=udv j=0° (8b)

odd. Here, " and 3" are the
amplitudes of the sawtooth profiles for the

if j is
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density and pressure fields respectively. For
Roe’s FDS with the function f, the amplitude at
the n+l1 time level can be manipulated to give

5"“=<1-2v,:Mnﬁ"-%‘}u—anlM!"ﬁ" (9a)

B[ 2v MM+ (v-1DM?)] 5" (9b)
where uy=—c-j3, =—Z—. When cell interface

velocity is not zero, pressure and density are
stable,
perturbation decay as time goes on. When cell

i.e. density perturbation and pressure

interface velocity is zero, pressure and density
are neutrally stable, ie. no growth and no
decay. However, if pressure difference exists, it
will drive convective flow, and velocity across
the cell interface will have the role of damping
out perturbed property. The rate at which
density perturbation is damped out is equal to
the dissipation coefficient of density, and the
rate at which the pressure field feeds density
perturbation is equal to the dissipation
coefficient of pressure, decreasing as pressure
perturbation increases. lLiou’s conjecture and
the above analysis show that the importance is
the relation between the feeding rate and the
damping rate in density perturbation. Certainly,
if the pressure field is continuously perturbed
and the damping rate in Eq. (9)
sufficient, then the function f may be ineffective

is not

especially in unsteady flow computation, and
rigorous non-linear concerning
dynamic behavior of flow property may be

required. However,

analysis

in most numerical tests
performed in this paper, the function f seems to
be sufficient to prevent the shock instability
from occurring. The numerical flux of Roe's
FDS with the function f defined in Eq. (7) is
given by

. b XFi-byXF; . by X b,
bl—bz bl‘bz

R o 9
bi=by © 1+ M|

F

. AQ

0
72

(10a)

2 A2

+ CoHmy—

A
u

(10b)

n

0
+p Au-n AU
Av-n AU
thu+ Ghv- DAU)

by.max (0,0+¢), by=min(0,0-2) (10c)
Equation (10) has the same form as HLLE except
BA4Q and the definitions of 5, and b,.

The case, which shows that the function f is not
sufficient to prevent the shock instability, is a double
Mach reflection problem. AUSM+ shows an
unphysical triple point [10] even though it has the
property D’=0, VM. In this case, the damping
rate in Eq. (9) is thought to be slow compared with
the rate at which pressure perturbation is generated
from the computational mesh. We think that this
phenomenon is due to the unsteadiness of the flow.
In order to cure this situation, i.e. to increase the

damping rate, function g is introduced as follows:

by X F;=byXFjoy | biXby

- A
Tt e g
b, xb, 1
g by-b, % 1+ 5 BiQ
l-min(l”—,m
g;(um ) aeo (11b)
1 M=0
2.3 Total enthalpy conservation
Roe’'s FDS does not preserve the total
enthalpy in inviscid steady flow. The

dissipation of the continuitv equation and the
energy equation in the subsonic region is given
by
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In order for the numerical flux to preserve

the total enthalpy, the following condition
should be satisfied:
Deuygy=Dmtimxity XH (13)

Equation (12) shows that the last two terms
are the error sources. Now, the total enthalpy
conservation property is easily obtained just by
removing the last two Then, the
modified Roe scheme with the total enthalpy

terms.

conservation property has an expression written
by

] by X F;j=byXFj., . b1 Xb; AQ"
- b1-b;

F

ol by~ b;
ik L (14a)
B by Xb, % 1 B0
b|_b2 1+|M|
P 1 0
soa| PuUl prap- o Ap ul,~| du-n AU
ho=a pu BAQ (Ap f & ){ o|"P Av-n, AU (14b)
pPH b2y AH

bi-max (0, O+ ), b=min(0,0-26) (14c)

2.4 Expansionshock, instabilityinthe
expansion region

Another failing of Roe’'s FDS is the
appearance of expansion shock. Roe’'s FDS
cannot distinguish the expansion shock from
shock. Also, in a highly
energetic flow, Roe’s FDS often calculates

the compression

physically unacceptable values, negative density
and negative temperature,
positivity condition. Einfeldt et al. [4] showed
that no Godunov-type scheme based on a

this concerns the

positively
conservative, and they concluded that the
reason for the failure of Roe’s FDS is that the
numerical signal velocities of Roe’s Riemann
underestimates the physical
velocities. Einfeldt et al. considered not only the
numerical signal velocities at a cell interface,
but also the numerical signal velocities at
re-defined the
eigenvalues of the dissipation matrix. Using
these re-defined eigenvalues, Eq. (14) can be

linearized Riemann solution 1is

solver signal

neighboring cells and

re~-formulated as follows.

e DIXE— by X Fiy | bixby .
FH"L_ bl—bz * bl—bZ aQ
: (15a)
TS
bi—b " 1+ M

b= max(O, U+ ¢, Ui + c,-H), by= min(O. U-c¢, U;—c;)
(15b)

2.5 Contact discontinuity

In order to resolve the boundary layer
accurately in viscous flow, it is essential to
discontinuity. The
solution for contact discontinuity moving with

capture  contact exact

speed wu,. requires that

Fr continuity _
Ity

—é‘[P,'uj+pj.1u,u1—|uc|AP] (16)

After some manipulations, the dissipative
coefficient of Eq. (15) is obtained as follows.

For u;=ujr\=u. 0;=p;s1= b, and p#0;+,

(@B Gra,) (20U 080U BEPuc2ab)

(17a)
bi=uc+a, by=u-p (0<u,<é) (17b)
For moving contact discontinuity with
057 Pi+1
u*0, a*¢, f=2¢ (18a)
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— (30, +3aaeay - 22
@ olcray (3¢u,+3ac-au.~ ¢ M= lud (18b)
The above expressions show that under

certain conditions, the re-formulated scheme in
Eq. (15) cannot capture contact discontinuity
exactly. Just introducing the concept of the
common speed of sound can easily cure it

RoeM 1 (Roe scheme with Mach
number-based function 1)
ble,‘b'gXFrl . by X b, »
Fi'%‘ by-by by~b, e (19 )
I WIS 4
by~b, 1+ M}

br.max (0,0+ ¢, U, + C),by-min (0,0~ ¢ U;-¢)  (19b)
RoeM 2
F,-+_L= b1XF2’~bszF;+1 n gligz 20°
2 102 %)
blxbz 1 (20>
—-gb]_b2 X I+IMBAQ

Now, RoeM 1 and RoeM 2 with the common
speed of sound in signal velocities satisfy Eq.
(16), still providing sufficient numerical
dissipation in the expansion region to prevent
an expansion shock.

For Uj~ Uy - U Dy b, and PiEPL

21

4
D ziane-lud

1-D shock tube test and contact discontinuity

problems are solved to confirm the above
analysis of the RoeM schemes and results are
compared with those of Roe’s FDS. This 1-D
shock tube case is similar to the classical Sod
test, but with special initial conditions given as
0,=3,u;=0.9,p,=3 and p,=1,u4,=0.9.p,=1,

with a sonic point along the rarefaction wave.

Roe's FDS has an entropy violating solution,
an expansion shock as shown in Fig. 3. Roell
1 and RoeM 2 add dissipation in the expansion
region and prevent the formation of an
expansion shock. Results of a slowly moving
contact discontinuity are shown in Fig. 6. The

initial conditions are p,=10.0,%,=0.1125, p,=1
and p,=0.125,4,=0.1125, p,=1. The
count is 500 with a CFL number of 0.83. and
the grid points are 100. This condition
corresponds to case 3. As mentioned before.
both RoeM 1 and RoeM 2 satisfv Eqg. (16) and

iteration

give accurate results, identical to that from
Roe’s FDS.
30 ¥

Roe's FOS

—@~— RoeM1

——— RoeM2

10 LR R S B | "
0.00 0.25 0.50 075 1.00
X-Axis

Fig. 5 Sod test with sonic point

—4@)— Roe'sFDS
RoeM 1
RoeM 2

Velocity

vefoeity

Pressure, Density

40 —

Fig. 6. Slowly moving contact discontinuity



50 Sung-soo Kim - Chongam Kim - Oh-Hyun Rho - Seung Kyu Hong

rl
S
2
e
o

A

ol

3%

3. Numerical Results

demonstrate  the
with

In this
capabilities of the

section, we
proposed schemes

carefully selected test cases.

3.1 Shock instability

Supersonic Flow around a Half-Cylinder.
The carbuncle phenomenon around a blunt
body is illustrated in Section 1.3. RoeM 1 and
RoeM 2 are used to calculate a supersonic
This
initial condition and
mesh as the test case in Section 1.3. Figure 7
shock profiles
which show monotonic behavior. There is no

inviscid flow around a half-cylinder.
problem has the same

shows pressure contour and

symptom of the carbuncle phenomenon.

“Z—  Total Enthatpy

Non-dimesionslized Varisbies

16 14
L along stagnation line

(a) RoeM 1

“Z—  Total Enthalpy

—sm Temperature

Hon-dimasionaiized Variables

1000

y ———  Temperature

480 —

00—

eo T 1
20 a3 a1 Ery

b 3 T T T 1

Bl 8 e 2
L atong stagnation line

(b) RoeM 2

Fig. 7 Pressure contour and shock profiles

Density Contour {RoeM 1)

iteration Number = 3300

Density Contour {RoeM 2)

fteration Number = 3400

Fig. 8 Quirk’s test

Figure 7 also shows the preservation of total
enthalpy, which is essential in predicting heat
flux accurately at the wall.

Quirk’s Test (Odd-Even Decoupling). The
description of this test is described in Section
1.1. Roe’s FDS amplifies the initial perturbation
and completely destroys the normal shock as
shown in Fig. 1. Figure 8 shows density
after 3400 iterations. All of the
presented schemes, RoeM 1 and RoeM 2 clearly
capture the shock, and initial perturbations do

contour

not seem to grow with time.

Density Contour on 400 x 410 mexh
ALSM+

(a) AUSM+

Density Contour on 400 x 406 mesh

RoeM 2

(b) RoeM 2

Fig. 9 Double Mach reflection
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The Kinked Mach Stem. In Section 1.2, we
showed that Roe’s FDS suffers from the
kinked Mach stem. Gressier et al. [10] showed
that even the AUSM+ scheme on a refined
mesh can suffer from the kinked Mach stem.
Density contour of AUSM+ and RoeM 2 on a
400x400 mesh are shown in Fig. 9. The kink
is about to develop in the AUSM+ scheme in
the principal Mach stem, while RoeM 2 does
not show such behavior.

3.2 Viscous flows
Shock Wave/Boundary Layer

This
laminar flow, characterized by an oblique shock

Interaction.

test case is with a two-dimensional

with an incident angle of 32.58%ipon a flat
plate causing a boundary layer to separate and

reattach around the shock-impinging region.
The complicated phenomenon provides a good
test of validating a scheme before a turbulence

model is implemented. The {ree stream
conditions are as follows!
® Calorically perfect gas o M.=2.0

® Re=2.96x10° ®Pr=0.72 ® @pincing=232.585"
The conditions for the computations are as
follows:

® Spatial discretization
Roe’s FDS, RoeM 1, RoeM 2 and HLLE
2nd order accuracy with van Leer’s limiter
Number of grid points = 105%65
® Boundary condition

Adiabatic wall condition

Figure 10 shows pressure contour of each
scheme. Impinging shock wave and circulatory
flow where flow is separated and reattached
are well resolved. No spurious oscillation near
obliqgue shock and wall is observed. In Fig. 11,

skin friction coefficients of RoeM 1 and Roell
2 are compared with the results of Roe's FDS
and the experimental data of Ref. [11]. Figure
11 shows that skin friction coefficients of all
the proposed very good
with FDS and
experimental data, indicating the capability of

schemes are in
agreement those of Roe's
all the proposed schemes to compute viscous
flows shock
separation. The error histories of the proposed

involving waves and flow

rates to

similar convergent

schemes show
Roe’s FDS.

Error History
Roes FOS

Resihual

—o

4) — -y e

o 190 200 300 00
Reration Number

Fig. 12. Cp distribution and error history

Transonic Flow - around RAEZ822 Airfoil
This concerned with viscous
turbulent flow around RAE2322 airfoil at the

test case is
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transonic flow regime. The free stream
conditions are as follows:
® Calorically perfect gas ® M.=0.73

® Re=65x10° ePr = 0.72 ® 2=2.79°

The conditions for the computations are as
follows:

® Spatial discretization
Roe’s FDS, RoeM 1, RoeM 2
2nd-order accuracy with van Leer’s limiter
241x48 C-type mesh
® Boundary condition
No-slip adiabatic wall condition

The conditions
experimental

correspond to the
Case 9 in Ref. [12]. The
Baldwin-Lomax turbulence model is used. The
flow is assumed to be fully turbulent without
any transition near the leading edge. Figure 12
shows Cp distributions and error history.
Differences between the current schemes and
Roe’s FDS are hardly noticeable. This results
show a fairly accurate Cp distribution compared

with the experimental data.

Hypersonic Flow around a Blunt Body. As a
final test case, a hypersonic blunt body problem
is chosen in order to examine the effects of a
strong shock discontinuity and large gradients
in a boundary layer. In computing this problem,
the primary concern is the accurate prediction
of the surface heating rate at the wall. The

free stream conditions are as follows:
o Calorically perfect gas ® M.=1632
® 5. -8295(N/m%) @ p.=5557 x10 *(kg/m®)
® y1..-3369 10 “(kg/m - s ® T.-52K

® T,u-2944K ® Re-=14972x10°

® Pr=072

The conditions for the computations are as
follows:

® Spatial discretization
RoeM 1 and RoeM 2
3rd-order accuracy with minmod limiter
Number of grid points = 65x113
e Boundary condition
Constant temperature wall

Roe's FDS is not used for this test due to
the shock instability, 1ie. the
phenomenon. We just compare the numerical
results with the experimental data.[13] Figure
13 shows surface heating rates of all the
proposed indicating a very good
agreement with the experimental data.

carbuncle

schemes,

4 Conclusions

From Roe’s FDS, the linearized
Riemann-solver, Roe with Mach number-based
function (RoeM) schemes that are free from the
shock instability are developed. In order to
control pressure contribution in the mass flux,
which is considered to be the source of the

shock instability,

- - o - e

[ ] Experiment
‘ ~£3— RoeM1
—€— RoeM2

5.0845 —|

4085

3.0€+5 —

Surface Heating Rate (Wim*2)

2.08+5 —]

10805 —

00840

T T T T T T 1
000 048 a8 120 160

Fig. 13 Surface heating rate

a control function f is introduced. The function f
has the role of reducing the rate at which pressure
perturbation feeds the density field. The function
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g that is used in RoeM 2 has the role of increasing
the rate at which density perturbation is damped
out. New wave speed is introduced to remedy
expansion shock and instability in the expansion
region, while still preserving the capability to
capture contact discontinuity exactly. For the
accurate prediction of the surface heat transfer rate,
RoeM schemes are designed to preserve total
enthalpy. Although control function fand g are very
simple and other better formulations may exist,
numerous computational tests performed in this
paper show that the proposed schemes are able to
solve a wide range of aerodynamic problems,
accurately and without the shock instability,
especially where strong shock wave exists.
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