초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network

  • 발행 : 2001.08.30

초록

리벳이음은 응력집중 등에 의한 피로균열 발생 가능성이 높은 구조특성을 가지므로 구조물의 안전성 확보를 위하여 비파괴 평가 방법에 의하여 리벳홀 주위 균열에 대한 평가가 요구되고 있다. 유도 초음파의 일종인 Lamb파는 판형상의 구조물의 비파괴 평가에 적합하며, 신경회로망은 비파괴 평가 기술에서 결합의 크기 및 종류 인식에 관하여 가장 효율적인 기법으로 많은 연구자들에 의해 적용되어 왔다. 본 연구에서는 항공기의 스킨재료로 적용되는 A12024-T3판재에 대하여 유도초음파의 일종인 판파를 적용하여 리벳홀 주위 균열 신호를 검출하였으며, 또한 리벳홀 주위 균열의 크기 평가를 위하여 백프로퍼게이션 알고리즘을 적용한 신경회로망을 적용하였다. 이때, 초음파 트랜스듀서와 시험편 사이의 불균일 접촉에 의한 오차를 줄이기 위하여 초음파 파형에서 시간 및 주파수 성분의 특성을 추출하여 신경회로망에 적용하였다. 그리고 이들 판파신호에서 추출한 시간 및 주파수 성분의 특성은 균열 크기 결정에 유용하게 적용될 수 있음을 증명하였다.

The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

키워드