Solubilization of Benzenesulfonate anion and Its Derivatives by the Micellar System of TTAB

TTAB 용액에서 Benzenesulfonate 음이온과 유도체들의 가용화에 대한 연구

  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology andEducation)
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Published : 20010200

Abstract

The interaction of benzenesulfonate anion and its derivatives ($C_6H_5SO_3^-, p-$CH_3C_6H_4SO_3^-, and $p-C_2H_5C_6H_4SO_3^-$) with the micellar system of cationic surfactant TTAB(tetradecyltrimethylammonium bromide) was studied by UV/Vis spectrophotometric method. The solubilization constants($K_s$) of benzenesulfonate anions into the micellar phase of this surfactant have been measured with the change of temperature. The effects of additives(n-pentanol and NaBr) on the solubilization of benzenesulfonate anions by this surfactant system have been also measured. There was a great decrease on the values of $K_s$ and CMC simultaneously with these additives so that the measured values of ln$K_s$ were linear relationships with the values of lnCMC. For the thermodynamic study, various thermodynamic parameters(${\Delta}G^0_s$, ${\Delta}H^0_s$ and ${\Delta}S^0_s$) have been calculated and analyzed from the dependence of Ks values on temperature.

양이온 계면활성제인 TTAB(tetradecyltrimethylammonium bromide)의 수용액에서 benzenesulfonate 음이온과 유도체($C_6H_5SO_3^-, p-$CH_3C_6H_4SO_3^-$p-C_2H_5C_6H_4SO_3^-$)들의 가용화 현상을 UV/Vis 분광광도법을 이용하여 연구하였다. 온도의 변화에 따른 가용화상수($K_s$)의 변화를 측정하고 분석하였으며, 또한 가용화에 영향을 미치는 n-펜탄올과 NaBr의 효과에 대하여 조사하였다. 이러한 첨가제는 $K_s$와 CMC 값을 동시에 큰 폭으로 감소시키는 경향을 나타내었으며, 측정한 In$K_s$ 값은 InCMC 값에 대하여 일차함수의 관계를 나타내었다. 그리고 열역학적 고찰을 위하여 온도에 따른 $K_s$ 값의 변화로부터 여러 가지 열역학 함수값(${\Delta}G^0_s$, ${\Delta}H^0_s$${\Delta}S^0_s$)을 계산하고 분석하였다.

Keywords

References

  1. Solubulization in Surfactant Aggregates Christian, S.D;Scamehon, J.F
  2. J. Phys. Chem. v.95 Lee, B.H;Christian, S.D;Tucker, E.E;Scamehorn, J.F
  3. J. Phys. Chem. v.97 Blasko, A;Bunton, C.A;Wright, S.J
  4. J. Am. Soc. v.103 Fendler, J.H;Hinze, W.L
  5. J. Phys. Chem. v.9 Moroi, Y;Mitsunobu, K;Morisue, T;Kadobayashi, Y;Sakai, M
  6. Solubilization and Related Phenomena McBain, M.E.L;Hutchinson, E
  7. Langmuir v.11 Takeuchi, M;Moroi, Y
  8. J. Phys. Chem. v.83 Bunton, C.A;Sepulveda, L.J
  9. J. Colloid Interface Sci. v.48 Dougherty, S.J;Berg, J.C
  10. J. Colloid Interface Sci. v.120 Nugara, N;Prapaitrakul, W;King, Jr.A.D
  11. J. Phys. Chem. v.85 Hirose, C;Sepulveda, L
  12. J. colloid Interface Sci. v.197 Takeuchi, M;Moroi, Y
  13. Langmuir v.15 Rodrigues, M.A;Alonso, E.O;Yihwa, C;Farah, J.P.S;Quina, F.H
  14. J. Korean Chem. Soc. v.42 Lee, B.H
  15. J. Korean Chem. Soc. v.44 Lee, B.H
  16. Langmuir v.12 Bachofer, S.J;Simonis, U
  17. J. Phys. Chem. v.96 Shanks, P.C;Franses, E.I
  18. J. Colloid Interface Sci. v.73 Zana, R;Picot, C;Duplessix, R
  19. Langmuir v.11 Burrows, J.C;Flynn, J;Kutay, S.M;Leriche, T.G;Marangoni, D.G
  20. J. Colloid Interface Sci. v.125 Moroi, Y;Matuura, R
  21. Langmuir v.10 Makayssi, A;Bury, R;Treiner, C
  22. J. Colloid Interface Sci. v.129 Sharma, B;Rakshit, A.K
  23. J. Colloid Interface Sci. v.129 Bertolotti, S.G;Garcia, N.A;Gaponer, H.E
  24. Langmuir v.12 Lopez, B.E.W;Gonzalez, J.V;Gamboa, C
  25. Langmuir v.6 Lee, B.H;Christian, S.D;Tucker, E.E
  26. Langmuir v.7 Lee, B.H;Christian, S.D;Tucker, E.E