DOI QR코드

DOI QR Code

Effects of the Magnetic Part of The Breit Term on Bonding: Model Calculations with Small Diatomic Molecules


Abstract

Model calculations for small molecules Li2, F2, LiF and BF have been performed at the Dirac-Fock level of theory using Dirac-Coulomb and Dirac-Coulomb-Magnetic Hamiltonians with various basis sets. In order to understand what may happen when the relativity becomes significant, the value of c, speed of light, is varied from the true value of 137.036 a.u. to 105 (nonrelativistic case) and also to 50 and 20 a.u. (exaggerated relativistic cases). Qualitative trends are discussed with special emphasis on the effect of the magnetic part of the Breit interaction term. The known relativistic effects on bonding such as the bond length contraction or expansion are demonstrated in this model study. Total energy, $\pi-orbital$ splitting, bond length, bond dissociation energy and dipole moment are calculated, and shown to be modified in a uniform direction by the effect of the magnetic term. Inclusion of the magnetic term raises the total energy, increases the bond length, reduces the $\pi-orbital$ splitting, increases the bond dissociation energy, and mitigates the changes in dipole moment caused by the Dirac term.

Keywords

References

  1. Relativistic Effects in Atoms, Molecules, and Solids; Plenum Malli, G. L.
  2. Methods in Computational Chemistry.Relativistic Effects in Atoms and Molecules v.2 Plenum Wilson, S.
  3. The Effects of Relativity on Atoms, Molecules, and the Solid State Plenum Grant, I. P; Gyorffy, B.; Wilson, S.
  4. Atomic Theory Workshop on Relativistic and QED Effects in Heavy Atoms AIP Kelly, H. P.;Kim, Y. S.
  5. Adv. Phy. v.19 Grant, I. P.
  6. At. Data Nucl. Data Tables v.12 Desclaux, J. P.
  7. Phys. Rev. v.154 Kim, Y. K.
  8. J. Chem. Phys. v.63 Malli, G.;Oreg, J.
  9. J. Chem. Phys. v.73 Matsuoka, O.;Suzuki, N.;Aoyama, T; Malli, G.
  10. Chem. Phys. Lett. v.74 Mark, F.;Rosicky, F.
  11. Quantum Mechanics of One and Two-eletron Atoms Springer Bethe, H. A.; Salpeter, E. E.
  12. Relativistic Electron Theory Wiley Rose, M. E.
  13. Proc. R. Soc. A v.122 Gaunt, J. A.
  14. J. Chem. Phys.;Studies Phys. Theoret. Chem. v.76;21 Lee, Y. S.;McLean, A. D.;McLean, A. D.;Lee, Y. S.
  15. Chem. Phys. Lett v.19+8 Baeck, K. K.;Lee, M. S.; Lee, Y. S.
  16. J. Chem. Phys. v.93 Baeck, K. K.;Lee, Y. S.
  17. J. Chem. Phys. v.100 Baeck, K. K.;Lee, Y. S.
  18. Computer Phys. Comm. v.82 Visscher, L.;Visser, O.; Aerts, P. J. C.;Merenga, H.;Niuwpoort, W. C.
  19. J. Chem. Phys. v.96 Dyall, K. G.
  20. J. Chem. Phy. v.97 Matsuoka, O.
  21. Physca Scripta. v.36 Schwarz, W. H. E.
  22. In The Concepot of the Cemical Bond Maksic, Z. B., Ed.; Springer-Verlag Schwarz, W. H. E.
  23. Chem. Rev. v.85 Pyykko, P.
  24. J. Chem. Phys. v.104 Visscher, L.;Dyall, K. G.
  25. J. Chem. Phys. v.105 Visscher, L.;Styszynski, J.;Nieuwpoort, W. C.
  26. J. Chem. Phys. v.108 de Jong, W. A.;Styszynski, J.; Nieuwpoort, W. C.
  27. Atom. Data Nucl. Data Tab. v.14 Clementi, E.;Roetti, R. C.
  28. J. Chem. Phys. v.56 Hehre, W. J.;Ditchfield, R.; Pople. J. A.
  29. J. Chem. Phys. v.72 Krishnan, R.;Binkley, J. S.;Seeger, R.; Pople, J. A.
  30. Phys. Rev. A v.25 Grat. I. P.
  31. J. Phys. v.B17 Dyall, K. G.;Grant, I. P.;Wilson, S.
  32. J. Phys. v.B18 Wood, J.;Grant, I. P.;Wilson, S.
  33. Autors of this version of ALCHEMY programs are P. S. Bagus M. Liu, A. D.;McLean;M. Yoshimine
  34. J. Chem. Phys. v.74 Christiansen, P. A.;Pitzer, K. S.
  35. Atomic Energy Levels, v.1 NSRDS-NBS 35 Moore, C. E.
  36. Acc. Chem. Res. v.12 Pyykko, P.;Desclaux, J. P.
  37. Chem. Phys. Lett. v.114 Almlof, J.; Faegri, K.;Grelland, H. H.
  38. Constants of Diatomic Molecules Van No strand ReinHold Co. Huber, K. P.;Herzberg, G.

Cited by

  1. Effective Valence Shell Hamiltonian Calculations on Spin-Orbit Coupling of SiH, SiH+, and SiH2+ vol.24, pp.6, 2001, https://doi.org/10.5012/bkcs.2003.24.6.723