In situ Aerobic Alcohol Oxidation-Wittig Reactions

Guncheol Kim, ${ }^{\text {D }}$ Don Gyu Lee, and Sukbok Chang ${ }^{*}$
Department of Chemistry, College of Natural Sciences, Chungnam National Lmiversity, Taejon 305-76t, Korea ${ }^{-}$Department of Chemistry, Ewha Womans Unwersity, Seoul 120-75, Korea

Recerved Jute 21, 2001
Keywords: Aerobic oxidation. Wittig reaction. Ruthenium catalyst.

Recently the in situ oxidation-Wittig reactions have been reported by several groups using stabilized Wittig reagent. ${ }^{\text {b }}$ Barrett's group used the Dess-Martin periodinane as an oxidant: ${ }^{-}$Matsuda's group barium permanganate. ${ }^{3}$ and Taylor's group manganese dioxide. ${ }^{4}$ The in situ reaction of aldelydes formed from the corresponding primary alcohols is counted to be experimentally convenient. especially in the case of the formation of reactive or unstable aldehyde intermediates. From the reaction of chiral γ-amino alcohols. the corresponding unsaturated esters could be synthesized without loss of stereochemical integrity: ${ }^{\text {: }}$
However, all the procedures referred above have used the stoichiometric or excess amounts of oxidant. Moreover the oxidants contain some defects in that barium permanganate is toxic. the hazardous preparation of the Dess-Martin oxidant requires attentive handling. and even the excess amounts of manganese dioxide should be activated before use. Therefore we hoped to develop a catalytic in situ oxidation-Wittig reaction under air. There is no doubt that catalytic and

Scheme 1
Table 1. In situ aerobic oxidation-Wittig reaction conditions ${ }^{\alpha}$

Entry	Additive	Solvent	Conditions	Yield (\%)	E / Z
l	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	toluene	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}, \mathrm{~N}_{2}$	6%	$24 / 1$
2	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	toluene	$40^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air	42%	$24 / 1$
3	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	toluene	$55^{\circ} \mathrm{C}, 12 \mathrm{~h}, \mathrm{O}_{2}$	75%	$24 / 1$
4	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	toluene	$55^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air	72%	$24 / 1$

"The misture of benzyl alcohol, the stabilized Wittig reagent. $\mathrm{Ph}_{3} \mathrm{P}=$ $\mathrm{CHCO}_{2} \mathrm{Et}$ (1.2 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1 equiv.), and the Ru-catalyst (4 mol ${ }^{\circ} .0$) in toluene was heat for the specified time.
aerobic processes would be economical. ${ }^{6}$ Recently. [(eta ${ }^{6}-p$ cymene) $\left.\mathrm{RuCl}_{2}\right]_{2}$ has been found to be a practical catalyst for the aerobic oxidation of allylic alcohols with additive $\mathrm{Cs}_{2} \mathrm{CO}_{3}{ }^{7}$ and we want to apply the reaction condition for the homologation of α, β-unsaturated alcohols. The commercially available ruthenium reagent is commonly used without any further treatment.

Initial studies concentrated on the comparison of the reaction under different atmospheric environments and finding optimum condition (Table 1). As shown in entry 1, the reaction was tried first under N_{2} to confirm whether the byproduct of Wittig reaction. triphenylphosphine oxide might act as an oxidant. Only 6% yield under the condition indicated that completion of the reaction should require at least stoichiometric amounts of oxygen as oxidant. Under O_{2} condition. the reaction proceeded faster however. the atmospheric pressure of air also afforded comparable yield with longer reaction time and the moderate temperature 55° was enough to carry out the reaction with the aid of one equivalent of additive $\mathrm{Cs}_{2} \mathrm{CO}_{3}{ }^{8}{ }^{8}$ The additive also helped to remove the remaining Ru-catalyst in the course of work-up. dissolving the complex into the aqueous phase. From the preliminary study. we found that it would be proper to use 4 $\mathrm{mol} \%$ of the ruthenium catalyst. 1.1 equivalents of $\mathrm{Ph}_{2} \mathrm{P}=$ $\mathrm{CHCO}_{2} \mathrm{Et}$. and one equivalent of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in toluene under air.

This homologation sequence was applied to several synthetically useful examples (Table 2). The reaction of cinnamyl alcohol 2 provided the desired product in 71% yield $(\mathrm{E} / \mathrm{Z}=20)$. And 9 was also obtained in good yield.

Table 2. In situ aerobic oxidation-Wittig reaction condition ${ }^{a}$

Substrate	Product	Conditions	Yield $(\%)^{b}$	E / Z
$\mathbf{2}$	$\mathbf{3}$	$55^{\circ} \mathrm{C}, 25 \mathrm{~h}$, air	71%	$20 / 1$
$\mathbf{4}$	$\mathbf{5}$	$55^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air	23%	$3 / 1$
$\mathbf{4}$	$\mathbf{5}$	$100^{\circ} \mathrm{C}, 26 \mathrm{~h}, \mathrm{air}$	47%	$3 / 1$
$\mathbf{6}$	$\mathbf{7}$	$55^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air	43%	$4 / 1$
$\mathbf{8}$	9	$55^{\circ} \mathrm{C}, 23 \mathrm{~h}$, air	83%	$50 / 1$
$\mathbf{1 0}$	11	$55^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air	28%	$9 / 1$
$\mathbf{1 2}$	$\mathbf{1 3 , 1 4 , 1 5}$	$65^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air	$9 \%(15) 45 \%(16,17)^{\text {c }}$	
$\mathbf{1 6}$	$\mathbf{1 7}$	$55^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air	6%	$2 / 1^{d}$

${ }^{a}$ Toluene was used as a solvent. and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1 \mathrm{eq}$.) was added as an additive. ${ }^{b}$ Yields were determined atter separation. ${ }^{c} 45^{\circ} \%$ is the combined vield of 16 and 17 (fomed in ca. $1: 1$ ratio). ${ }^{d}$ The ratio is that of $E E \cdot E: Z E . E$.

However. some limitations of this reaction have been also found. Low yield. 28%, was detected in the reaction of + at $55^{\circ} \mathrm{C}$, but the yield was raised at $100^{\circ} \mathrm{C}$. Compound 12 afforded tetraene diester $\mathbf{1 3}$ in only 9% yield and $c a .1: 1$ mixture of 14 and 15 in 45% yield. Prolonged heating of the mixture even at higher temperature did not change much the yields of each comprounds. 13. 14, and 15 . Similarly, the triene diester $\mathbf{1 7}$ was obtained in 6% yield. It seems that the diester precursors poison the catalyst through complexation.
In conclusion. the in situ aerobic alcohol oxidation-Wittig reaction using a ruthenium catalyst has been applied to α, β unsaturated alcohols to obtain the corresponding esters for the furst time. This process is expected to be explored usefully in organic syntheses.
Acknowledgment. This research was funancially supported by the Center for Molecular Design and Synthesis (CMDS) at the Korea Advanced Institute of Science and Technology.

References

1. (a) Blackbum, L.: Wei, X.: Taylor, R. J. K. Chem. Commum. 1999, 1493. (b) Crich, D.; Mo, X. Symbtt 1999, 67.
2. Barret, A. G. M.; Hamprecht, D.; Olkubo, M. J. Org. Chem. 1997, 62, 9376.
3. Shuto, S.; Niizuma, S.: Matsuda, A. J. Org. Chem. 1998, 63. 4489.
4. Wei, X.; Taylor, R. I. K. Tetrahedron Lett. 1998, $39,3815$.
5. Davies, S. B.; McKervey, M. A. Tetrahedron Lett. 1999. 40, 1229.
6. (a) ten Brink; G. J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636. (b) Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Chellé-Regnaut, I.; Gautier, A.; Brown, S. M.; Belgium, C. T. J. Org. Chem. 1999, 6ł, 2433 . (c) Dijkman, A.; Arends, I. W. C. E.; Sheldon, R. A. Chem. Commom. 1999, 1591 and references cited therein.
7. Lee, M.: Chang, S. Tetrahedron Lett. 2000, 41, 7507.
8. Representative procedure: A mixture of benzyl alcohol ($104 \mathrm{mg}, 0.91 \mathrm{mmol}$), $\mathrm{Cs}_{5} \mathrm{CO}_{3}$ ($300 \mathrm{mg}, 0.91 \mathrm{mmol}$), ethoxy carbony lmethy lenetriphenylphosphorane (368 mg , 1.0 mmol), and dichloro (p-cymene)ruthenium (II) dimmer ($22 \mathrm{mg}, 0.036 \mathrm{mmol}$) in toluene (4 mL) was heated at 55 ${ }^{\circ} \mathrm{C}$ under air for 26 hr . The misture was diluted with 10 mL of ethylacetate and the orgnic layer was washed with water twice and brine once. After dry over anhydrous magnesium sulfate and concentration, the crude product was purified by column chromatography to afford 116 mg of ester in 72% yield.
