DOI QR코드

DOI QR Code

Kr Atoms and Their Chlustering in Zeolite A


Abstract

The positions of Kr atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated zeolite A of unit-cell composition Cs3Na8HSi12Al12O48 (Cs3-A) have been determined. Cs3-A was exposed to 1025 atm of krypton gas at 400 $^{\circ}C$ for four days, followed by cooling at pressure to encapsulate Kr atoms. The resulting crystal structure of Cs3-A(6Kr) (a = $12.247(2)\AA$, R1 = 0.078, and R2 = 0.085) has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C$ and 1 atm. In the crystal structure of Cs3-A(6Kr), six Kr atoms per unit cell are distributed over three crystallographically distinct positions: each unit cell contains one Kr atom at Kr(1) on a threefold axis in the sodalite unit, three at Kr(2) opposite four-rings in the large cavity, and two at Kr(3) on threefold axes in the large cavity. Relatively strong interactions of Kr atoms at Kr(1) and Kr(3) with Na+ ions of six-rings are observed: Na-Kr(1) = 3.6(1) $\AA$ and Na-Kr(3) = $3.08(5)\AA.$ In each sodalite unit, one Kr atom at Kr(1) was displaced $0.74\AA$ from the center of the sodalite unit toward a Na+ ion, where it can be polarized by the electrostatic field of the zeolite, avoiding the center of the sodalite unit which by symmetry has no electrostatic field. In each large cavity, five Kr atoms were found, forming a trigonal-bipyramid arrangement with three Kr(2) atoms at equatorial positions and two Kr(3) atoms at axial positions. With various reasonable distances and angles, the existence of Kr5 cluster was proposed (Kr(2)-Kr(3) = $4.78(6)\AA$ and Kr(2)-Kr(2) = $5.94(7)\AA$, Kr(2)-Kr(3)-Kr(2) = 76.9(3), Kr(3)-Kr(2)-Kr(3) = 88(1), and Kr(2)-Kr(2)-Kr(2) = $60^{\circ}).$ These arrangements of the encapsulated Kr atoms in the large cavity are stabilized by alternating dipoles induced on Kr(2) by four-ring oxygens and Kr(3) by six-ring Na+ ions, respectively.

Keywords

References

  1. Am. J. Phys. v.54 Guemez, J.; Velasco, S.
  2. J. Chem. Soc., Faraday Trans. 2 v.85 Woods, G. B.; Rowlinson, J. S.
  3. Phys. Rev. A v.38 Cooper, D. W.
  4. Phys. Rev. Lett. v.66 Chmelka, B. F.; Raftery, D.; McCormick, A. V.; de Menorval, L. C.; Levine, R. D.; Pines, A.
  5. Molecular Physics v.73 McCormick, A. V.; Chmelka, B. F.
  6. Zeolite Molecular Sieve: Structure, Chemistry,and Uses Breck, D. W.
  7. CHEMTECH v.1 Fraenkel, D.
  8. J. Phys. Chem. Solids v.32 Barrer, R. M.; Vaughan, D. E. W.
  9. J. Am. Chem. Soc. v.90 Fraenkel, D.; Shabtai, J.
  10. Bull. Korean Chem. Soc. v.14 Kwon, J. H.; Cho, K. H.; Kim, H. W.: Suh, S. H.; Heo, N.H.
  11. J. Phys. Chem. v.96 Yoon, J. H.; Heo, N. H.
  12. Hwahak Konghak v.29 Heo, N. H.; Rho, B. R.; Kim, D. H.; Kim, J. T.
  13. Hwahak Konghak v.29 Kim, D. H.; Kim, J. T.; Heo, N. H.
  14. Bull. Korean Chem. Soc. v.15 Cho, K. H.; Kwon, J. H.; Kim, H. W; Park, C. S.; Heo, N.H.
  15. J. Phys. Chem.Kr Atoms and Their Clustering in Zeolite A v.98 Heo, N. H.; Cho, K. H.; Kim, J. T.; Seff, K.
  16. M. E. Thesis Kwon, J. H.
  17. J. Phys. Chem. v.100 Heo, N. H.; Lim, W. T.; Seff, K.
  18. J. Phys. Chem. B v.103 Heo, N. H.; Lim, W. T.; Kim, B. J.; Lee, S. Y.; Kim, M. C.;Seff, K.
  19. Bull. Korean Chem. Soc. v.21 Lim, W. T.; Park, M.; Heo, N. H.
  20. J. Chem. Soc.Faraday Trans. I v.74 Barrer, R. M.; Vansant, E. F.; Peeters, G.
  21. J. Chem.Soc., Faraday Trans. I v.82 Thijs, A.; Peeters, G.; Vansant, E. F.; Verhaert, I.
  22. J. Chem.Soc., Faraday Trans. I v.80 Niwa, M.; Kato, S.; Hattori, T.; Marakami, Y.
  23. Argon, Helium, and the Rare Gases v.1 no.1 Cook, G. A.
  24. J. Chem. Educ. v.41 Breck, D. W.
  25. Trans. Faraday Soc. v.59 Barrer, R. M.; Gibbons, R. M.
  26. Trans. Faraday Soc. v.63 Barrer, R. M.; Vaughan, D. E. W.
  27. Surf. Sci. v.14 Barrer, R. M.; Vaughan, D. E. W.
  28. J. Chem. Soc., Faraday Trans. I v.77 Fraenkel, D.
  29. J. Chem. Soc., Chem.Commun. Fraenkel, D.; Ittah, B.; Levy, M.
  30. J. Phys. Chem. v.92 Samant, M. G.; de Menorval, L. C.; Dalla Betta, R. A.;Boudart, M.
  31. Faraday Discuss. Chem. Soc. v.89 Dooryhee, E.; Greaves, G. N.; Steel, A. T.; Townsend, R.P.; Carr, S. W.; Thomas, J. M.; Catlow, C. R. A.
  32. J. Phys.Chem. v.96 Santikary, P.; Yashonath, S.; Ananthakrishna, G.
  33. Chem. Phys. Lett. v.137 Derouane, E. G.; Nagy, J. B.
  34. The nomenclature refers to the contents of the Pm3m unit cell: e.g., Na12-A represents Na12Si12Al12O48. v.22 no.9
  35. J. Crystal Growth v.8 Charnell, J. F. J.
  36. J. Am. Chem. Soc. v.100 Cruz, W. V.; Leung, P. C. W.; Seff, K.
  37. J. Phys. Chem. v.88 Mellum, M. D.; Seff, K.
  38. International Tables for X-ray Crystallogrphy v.IV
  39. Acta Crystallogr. v.18 Cromer, D. T.
  40. International Tables for X-ray Crystallography v.IV
  41. J. Am. Chem. Soc. v.109 Heo, N. H.; Seff, K.
  42. J. Phys. Chem. v.79 Vance, T. B., Jr.; Seff, K.
  43. J. Am. Chem. Soc. v.99 Firor, R. L.; Seff, K.
  44. J. Phys. Chem. v.93 Subramanian, V.; Seff, K.
  45. J. Phys. Chem. v.82 Ogawa, K.; Nitta, M.; Aomura, K.
  46. J. Phys. Chem. v.86 Takaishi, T.; Hosoi, H.
  47. J. Phys. Chem. v.77 Yanagida, R. Y.; Amaro, A. A.; Seff, K.
  48. Zeolite Molecular Sieve: Structure, Chemistry,and Uses Breck, D. W.
  49. Handbook of Chemistry and Physics v.64
  50. Acta Crystallogr., Sect. B v.25 Shannon, R. D.; Prewitt, C. T.
  51. Philos. Mag. v.5 Figgins, B. F.; Smith, B. L.
  52. Ph. D. Thesis Seff, K.
  53. J. Chem.Soc., Faraday Trans. I v.82 Anderson, M. W.; Klinowski, J.; Thomas, J. M.
  54. J. Phys. Chem. v.99 Li, F. Y.; Berry, S. R.

Cited by

  1. Study of Type-A Zeolites. Part 1: Mechanism of He and Ne Encapsulation vol.107, pp.35, 2003, https://doi.org/10.1021/jp034644f
  2. Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database vol.39, pp.3, 2001, https://doi.org/10.1063/1.3432459