DOI QR코드

DOI QR Code

Preliminary Molecular Dynamics Simulations of the OSS2 Model for the Solvated Proton in Water


Abstract

The OSS2(Ojame-Shavitt-Singer 2)[L. Ojame et al., J. Chem. Phys. 109, 5547 (1998)] model as a dissociable water model is examined in order to study the dynamics of H+ in water. MD simulations for 216 water system, 215 water + H+ ion system, and 215 water + OH- ion system using the OSS2 model at 298.15 K with the use of Ewald summation are carried out. The calculated O-H radial distribution functions for these systems are essentially the same and are in very good agreement with that obtained by Ojame.

Keywords

References

  1. Electrochem. v.34 no.546 Huckel, E. Z.
  2. J. Chem. Phys. v.1 no.515 Bernal, B.;Flowler, R. H.
  3. Can. J. Chem. v.54 no.3477 Giguere P. A.;Turrell, S.
  4. In The Hydrogen Bond v.2 Zundel, G.;Schuster, P.(eds.);Zundel, G.(eds.);Sandorfy, C.(eds.)
  5. In Hydrogen-Bonded Liquids Bratos, S.;Ratajczak, H.;Viot, P.;Dore, J. C.(eds.);Texeria, J.(eds.)
  6. In the Hydrogen Bond v.2 Lundgren, J.-O.;Olovson, I;Schuster, P(eds.);Zundel, G.(eds.);Sandorfy, C.(eds.)
  7. J. Chem. Phys. v.69;73 no.1473;3384 Stillinger, F. H.;David, C. W.
  8. Chem. Phys. Lett. v.79 no.259 Stillinger, F. H.;Weber, T. A.
  9. J. Phys. Chem. v.86 no.1314 Weber, T. A.;Stillinger, F. H.
  10. J. Chem. Phys. v.76;77 no.4028;4150
  11. J. Chem. Phys. v.109 no.5547 Ojame. L.;Shavitt, I.;Singer, S. J.
  12. J. Chem. Phys. v.112 no.710 Singer, S. J.;McDonald, S.;Ojame, L.
  13. J. Am. Chem. Soc. v.112 no.9144 Caldwell, J.;Dang, L. X.;Kollman, P. A.
  14. J. Am. Chem. Soc. v.113 no.2481 Dang, L. X.;Rice, J. E.;Caldwell, J.;Kollman, P. A.
  15. J. Chem. Phys. v.96 no.6970 Dang, L. X.
  16. J. Chem. Phys. v.99 no.6950 Dang, L. X.;Smith, D. E.
  17. J. Chem. Phys. v.100 no.3757 Smith, D. E.;Dang, L. X.
  18. Proc. R. Soc. London v.A373 no.27 de Leeuw, S. W.;Perram, J. W.;Smith, E. R.
  19. Comput. Phys. Commun. v.25 no.159 Anastasiou, N.;Fincham, D.
  20. J. Reine Angew. Math. v.Ⅳ no.232 Gauss, K. F.
  21. Phys. Rec. Lett. v.48 no.1818 Hoover, W. G.;Ladd, A. J. C.;Moran, B.
  22. J. Chem. Phys. v.78 no.3297 Evans, D. J.
  23. Phys. Rev. v.28 no.1016 Evans, D. J.;Hoover, W. G.;Failor, B. H.;Moran, B.;Ladd, A. J. C.
  24. Numerical Initial Value Problems in Ordinary Differentical Equations Gear, W. C.
  25. Comput. Phys. Rep. v.1 no.297 Evans, D. J.;Morris, G. P.
  26. J. Chem. Phys. v.97 no.2659 Dang, L. X.

Cited by

  1. Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters vol.23, pp.1, 2002, https://doi.org/10.5012/bkcs.2002.23.1.107
  2. Molecular Dynamics Simulation Study of the Ionic Mobility of OH- Using the OSS2 Model vol.27, pp.8, 2001, https://doi.org/10.5012/bkcs.2006.27.8.1154
  3. Performance of alkaline fuel cells: A possible future energy system? vol.161, pp.1, 2001, https://doi.org/10.1016/j.jpowsour.2006.03.052
  4. H+ Ion Migration in Water Filled Carbon Nanotube vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.700
  5. Molecular Dynamics Simulation Study for Self-diffusion Coefficients of the Scaled OSS2 Water vol.30, pp.9, 2001, https://doi.org/10.5012/bkcs.2009.30.9.2158
  6. The Radial Distribution Functions of the Scaled OSS2 Water vol.56, pp.6, 2001, https://doi.org/10.5012/jkcs.2012.56.6.669