References
- Organic Reactions v.51 Ciganek, E.
- Tetrahedron v.44 no.4653 Drewes, S. E.;Roos, G. H. P.
- Tetrahedron v.52 no.8001 Basavaiah, D.;Rao, P. D.;Hyma, R. S.
- J. Am. Chem. Soc. v.119 no.4317 Brezezinski, L. J.;Rafel, S.;Leahy, J. W.
- J. Org. Chem. v.62 no.1521 Rafel, S.;Leahy, J. W.
- Tetrahedron Lett. v.42 no.85 Basavaiah, D.;Kumaragurubaran, N.;Sharada, D. S.
- Org. Lett. v.2 no.729 Yang, K.-S.;Chen, K.
- Tetrahedron Lett. v.39 no.375 Chamakh, A.;Amri, H.
- Tetrahedron Lett. v.42 no.477 Basavaiah, D.;Kumaragurubaran, N.
- Tetrahedron Lett. v.41 no.2613 Kim, H. S.;Kiim, T. Y.;Lee, K. Y.;Chung, Y. M.;Lee, H. J.;Kim, J. N.
- Tetrahedron Lett. v.39 no.6223 Lee, H. J.;Seong, M. R.;Kim, J. N.
- Tetrahedron Lett. v.40 no.4363 Lee, H. J.;Kim, H. S.;Kim, J. N.
- Org. Lett. v.2 no.343 Kim, J. N.;Lee, K. Y.;Kim, H. S.;Kim, T. Y.
- J. Chem. Soc., Chem. Commun. v.2563 Familoni, O. B.;Kaye, P. T.;Klaas, P. J.
- J. Chem. Soc., Perkin Trans. l v.1809 Bode, M. L.;Kaye, P. T.
- J. Chem. Soc., Perkin Trans. l v.2612 Bode, M. L.;Kaye, P. T.
- Tetrahedron Lett. v.33 no.6159 Amri, H.;El Gaied, M. M.;Ben Ayed, T.;Villieras, J.
- Tetrahedron Lett. v.33 no.7345 Amri, H.;El Gaied, M. M.;Ben Ayed, T.;Villieras, J.
- Tetrahedron Lett. v.30 no.1889 Jungheim, L. N.
- Nat. Prod. Rep. v.14 no.605 Michael, J. P.
- In Comprehensive Heterocyclic Chemistry Ⅱ v.5 Balasubramanian, M.;Keay,J. G.;Katritzky, A. R.;(eds.);Rees, C. W.(eds.);Scriven, E. F. V.(eds)
- In Comprehensive Heterocyclic Chemistry Ⅱ v.5 Jones, G.;Katritzky, A. R.(eds.);Rees, C. W.(eds.);Scriven, E. F. V.(eds.)
- Tetrahedron Lett. v.41 no.531 Ranu, B. C.;Hajra, A.;Jana, U.
- Tetrahedron Lett. v.40 no.1499 Cho, C. S.;Oh, B. H.;Shim, S. C.
- Synlett v.401 Cacchi, S.;Fabrizi, G.;Marinelli, F.
- Org. Lett. v.1 no.1977 Suginome, M.Fukuda, T.;Ito, Y.
- J. Org. Chem. v.63 no.9989 Katritzky, A. R.;Arend, M.
- Tetrahedron Lett. v.37 no.2757 Ruhland, T.;Kunzer, H.
- Heterocycles v.34 no.2143 Radl, S.;Bouzard, D.
- J. Org. Chem. v.53 no.4218 Qiang, L. G.;Baine, N. H.
Cited by
- Isatin derivatives are reactive electrophilic components for the Baylis–Hillman reaction vol.43, pp.11, 2001, https://doi.org/10.1016/s0040-4039(02)00160-0
- Facile Syntheis of 5-Arylpent-4-enoates from the Baylis-Hillman Acetates vol.23, pp.10, 2002, https://doi.org/10.5012/bkcs.2002.23.10.1361
- Facile Synthesis of 3-Alkoxymethyl 2(1H)-Quinolinones from the Baylis-Hillman Adducts of 2-Nitrobenzaldehydes vol.23, pp.10, 2001, https://doi.org/10.5012/bkcs.2002.23.10.1493
- The Most Simple and Convenient Synthesis of the Baylis-Hillman Adducts of Cycloalkenones:Use of DMAP in Aqueous THF vol.23, pp.5, 2002, https://doi.org/10.5012/bkcs.2002.23.5.659
- Synthesis of 2-Benzylphenols: Transformation of the Baylis-Hillman Adducts Derived from 2-Cyclohexen-1-one vol.24, pp.4, 2001, https://doi.org/10.5012/bkcs.2003.24.4.409
- One-Pot Synthesis of 5-Arylpent-4-enoate Derivatives from Baylis-Hillman Acetates: Use of Phosphorous Ylide vol.24, pp.4, 2001, https://doi.org/10.5012/bkcs.2003.24.4.511
- Synthesis of 3-Substituted Quinolines via Transition-Metal-Catalyzed Reductive Cyclization of o-Nitro Baylis−Hillman Acetates vol.68, pp.16, 2001, https://doi.org/10.1021/jo034447c
- Pd(OAc)2-Catalyzed Isomerization of Acetates of the Baylis-Hillman Adducts vol.25, pp.1, 2004, https://doi.org/10.5012/bkcs.2004.25.1.027
- Baylis-Hillman Reaction and Chemical Transformations of Baylis-Hillman Adducts vol.26, pp.10, 2005, https://doi.org/10.5012/bkcs.2005.26.10.1481
- Synthesis of Symmetric Diallyl Disulfides from Baylis-Hillman Acetates vol.27, pp.11, 2001, https://doi.org/10.5012/bkcs.2006.27.11.1900
- A Mild and Efficient Stereoselective Synthesis of (Z)- and (E)-Allyl Sulfides and Potent Antifungal Agent, (Z)-3-(4-Methoxybenzylidene)thiochroman-4-one from Morita–Baylis–Hillman Acetates vol.55, pp.8, 2001, https://doi.org/10.1248/cpb.55.1274
- Application of the acetate of baylis‐hillman adducts in the synthesis of 3‐carbomethoxy‐2H‐thiochromenes vol.45, pp.1, 2001, https://doi.org/10.1002/jhet.5570450129
- Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
- Synthesis of Rearranged N-Tosyl Aza-Baylis-Hillman Adducts under Acidic Conditions Catalyzed by CH3SO3H or Montmorillonite K10 vol.30, pp.4, 2001, https://doi.org/10.5012/bkcs.2009.30.4.941
- Synthesis of Substituted 1,8-Naphthyridine-3-carboxylates from Baylis–Hillman Adducts of Substituted 2-Chloronicotinaldehydes vol.92, pp.5, 2001, https://doi.org/10.1002/hlca.200800352
- Copper‐Catalyzed Domino SN2′/Coupling Reaction: A Versatile and Facile Synthesis of Cyclic Compounds from Baylis–Hillman Acetates vol.355, pp.6, 2001, https://doi.org/10.1002/adsc.201201033
- A Multi‐Component Reaction in the Morita–Baylis–Hillman Route vol.2013, pp.22, 2001, https://doi.org/10.1002/ejoc.201201621
- Novel Sulfamic Acid-Promoted Synthesis of 3-Alkylidene Indolone Derivatives in the Presence of Aniline via One-Pot Multicomponent Reaction vol.43, pp.5, 2001, https://doi.org/10.1080/00397911.2011.605241
- Synthesis of substituted quinolines via allylic amination and intramolecular Heck-coupling vol.12, pp.45, 2014, https://doi.org/10.1039/c4ob01614a
- N‐Bromosuccinimide‐Mediated Radical Cyclization of 3‐Arylallyl Azides: Synthesis of 3‐Substituted Quinolines vol.357, pp.1, 2001, https://doi.org/10.1002/adsc.201400637
- Visible light catalyzed synthesis of quinolines from (aza)-Morita-Baylis-Hillman adducts vol.16, pp.43, 2001, https://doi.org/10.1039/c8ob02260g
- Facile Synthesis of Dihydroquinolines via Palladium Catalyzed Sequential Amination and Cyclisation of Morita‐Baylis‐Hillman Alcohols vol.5, pp.43, 2020, https://doi.org/10.1002/slct.202003413