DOI QR코드

DOI QR Code

Effect of Metal Ions on the Degradation and Adsorption of Two Cellobiohydrolases on Microcrystalline Cellulose


Abstract

To test the metal ion effect, hydrolysis experiments for two cellobiohydrolases (CBHⅠ and CBH Ⅱ) from Trichoderma reesei have been carried out in the presence of 10 mM metal ions, such as Cu++, Mn++, Ca++, Hg++, Ba++, Pb++, and Cd++. The addition of Mn++, Ba++, and Ca++(10 mM) during the hydrolysis of Avicel PH 101 caused an increase in the total reducing sugar (TRS) for CBH Ⅰ by 142, 135, and 114 percent, respectively. Those for CBH Ⅱ increased by 177, 175, and 115 percent, respectively. The Mn++ was the most stimulatory metal ion, whereas Hg++ was the most inhibitory metal ion. The adsorption experiments were performed to investigate how the influence of Mn++ and Hg++ on the hydrolysis is related to the adsorption of cellobiohydrolases on cellulose. The increase in TRS during hydrolysis by adding Mn++ caused an increase in adsorption affinity (Kad) and tightness (ΔHa). While, the decrease of TRS during hydrolysis by adding Hg++ caused a decrease in the adsorption affinity (Kad) and tightness (ΔHa). These results indicate the changes in the tightness and affinity of adsorption by adding metal ions play a crucial role in the degradation of the microcrystalline cellulose.

Keywords

References

  1. Enzyme Microb. Technol. v.5 Landish, M. R.; Lin, K. W.; Voloch, M.; Tsao, G. T.
  2. Appl. Biochem. Biotechnol. v.12 Klyosov, A. A.; Consultant, U.
  3. J. Ferment. Technol. v.57 Kanamoto, J.; Sakamoto, R.; Arai, M.; Murao, S.
  4. J. Gen. Microbiol. v.133 Au, K. S.; Chan, K. Y.
  5. Appl. Environ. Microbiol. v.43 Johnson, E. A.; Sakajoh, M.; Halliwell, G.; Madia, A.; Demain, A. L.
  6. Biotechnol. Bioeng. v.30 Beldman, G.; Voragen, G. A. G.; Rombouts, F. M.; Searlevan Leeuwen, M. F.; Pilinik, W.
  7. Biotechnol. Bioeng. v.26 Ryu, D. D. Y.; Kim, C.; Mandels, M.
  8. Biotechnol. Bioeng. v.33 Kyriacou, A.; Neufeld, R. J.; MacKenzie, C. R.
  9. Enzyme Microb. Technol. v.16 Kim, D. W.; Jeong, Y. K.; Lee, J. K.
  10. Biotechnol. Appl. Biochem. v.27 Kim, D. W.; Jang, Y. H.; Jeong, Y. K.
  11. Biotechnology Letters v.19 Kim, D. W.; Jang, Y. H.; Jeong, Y. K.
  12. J. Appl. Biochem. v.6 Bhikhabhai, R.; Johansson, G.; Pettersson, G.
  13. Laboratory Experimentals in Biological Chemistry Summer, J. B.; Somers, G. F.
  14. J. Biol. Chem. v.193 Lowry, O. H.; Rosebrough, N. J.; Farr, A. E.; Randall, R. J.
  15. Biotechnol. Bioeng. v.25 Ooshima, H.; Sakata, M.; Harano, Y.
  16. Appl. Microbiol. Biotechnol. v.28 Kim, D. W.; Yang, J. H.; Jeong, Y. K.
  17. J. Biochem. v.111 Hoshno, E.; Kanda, T.; Sasaki, Y.; Nisizawa, K.
  18. FEBS Lett. v.184 Chanzy, H.; Henrissat, B.

Cited by

  1. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits vol.5, pp.None, 2001, https://doi.org/10.1186/1754-6834-5-80
  2. Highly Thermostable and pH-Stable Cellulases from Aspergillus niger NS-2: Properties and Application for Cellulose Hydrolysis vol.172, pp.1, 2014, https://doi.org/10.1007/s12010-013-0511-9
  3. Modification of paper properties using carbohydrate-binding module 3 from the Clostridium thermocellum CipA scaffolding protein produced in Pichia pastoris: elucidation of the glycosylation effect vol.22, pp.4, 2001, https://doi.org/10.1007/s10570-015-0655-6
  4. Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse vol.33, pp.3, 2016, https://doi.org/10.1016/j.nbt.2015.12.002
  5. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera vol.96, pp.9, 2016, https://doi.org/10.1002/jsfa.7484
  6. Expression and characterization of a cellobiohydrolase (CBH7B) from the thermophilic fungus Thielavia terrestris in Pichia pastoris vol.63, pp.5, 2001, https://doi.org/10.1002/bab.1431