DOI QR코드

DOI QR Code

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers


Abstract

A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Keywords

References

  1. Eur. J. Pharm. Biopham. v.39 Alleman, E.;Gurny, R.;Doelker, E.
  2. J. Control. Release v.19 Couvreur, P.;Fattal, E.;Alphandry, H.;Puisieux, F.;Andremont, A.
  3. Pharmaceut. Technol. v.5 Davis, S. S.
  4. Science v.263 Gref, R.;Minamitake, Y.;Peracchia, M. T.;Trubetskoy, V.;Torchilin, V.;Langer, R.
  5. Drug Devel. Ind. Pharm. v.25 Jeong, Y. I.;Nah, J. W.;Na, H. K.;Na, K.;Kim, I. S.;Cho, C. S.;Kim, S. H.
  6. Control. Release v.16 Kreuter, J.
  7. Chem. Engng. Sci. v.50 Langer, R.
  8. J. Control. Release v.24 Kataoka, K.;Kwon, G. S.;Yokoyama, M.;Okano, T.;Sakurai, Y.
  9. J. Polym. Sci. v.85 La, S. B.;Okano, T.;Kataoka, K.
  10. J. Polym. Sci. B:Polym. Phys. v.36 Nah, J. W.;Jeong, Y. I.;Cho, C. S.
  11. Biochim. Biophys. Acta. v.1029 Blume, G.;Cevc, G.
  12. Bull. Korean Chem. Soc. v.19 Chung, Y. C.;Jeong, J. M.;Hwang, J. H.
  13. Bull. Korean Chem. Soc. v.19 Jin, J. Y.;Lee, Y. S.
  14. Pharm. Acta. Helv. v.70 Vemuri, S.;Rhodes, C. T.
  15. Cancer Res. v.51 Yokoyama, M.;Miyauchi, M.;Yamada, N.;Okano, T.;Sakurai, Y.;Kataoka, K.
  16. Cancer Res. v.51 Yokoyama, M.;Okano, T.;Sakurai, Y.;Ekimoto, H.;Shibazaki, C.;Kataoka, K.
  17. J. Control. Release v.51 Jeong, Y. I.;Cheon, J. B.;Kim, S. H.;Nah, J. W.;Lee, Y. M.;Sung, Y. K.;Akaika, T.;Cho, C. S.
  18. J. Biomed. Mater. Res. v.23 Lee, J. H.;Kopecek, J.;Andrade, J. D.
  19. Polym. Paint Colour J. v.167 Jenkins, V. F.
  20. Polymer Blends. v.2 Koleskem, J. V.(Ed.);Paul D. R.(Ed.);Newan, S.(Ed.)
  21. Pharm. Acta Helv. v.65 Mura, P.;Liguori, A.;Bramanti, G.;Corti, P.;Murratzu, C.;Celesti, L.
  22. Remington: The Science and Practice of Pharmacy, $19^th ed.$ v.2 White, H. S.;Gennaro, A. R.(Ed.)
  23. Polymer v.30 Cerrai, P.;Tricoli, M.;Andruzzi, F.;Paci, M.;Paci, M.
  24. J. Am. Chem, Soc. v.99 Kalyanasundaram, K.;Thomas, J. K.
  25. MacromoleCules v.24 Wilhelm, M.;Zhao, C. L.;Wang, Y.;Xu, R.;Winnik, M. A.;Mura, J. L.;Riess, G.;Croucher, M. D.
  26. J. Chem. Phys. v.90 Nagarajan, R.;Ganesh, K.
  27. Eur, Polym. J. v.8 Crescenzi, V.;Manzini, G.;Calzolari, G.;Borri, C.
  28. Polymer v.39 Bogdanov, B.;Vidts, A.;Van Den Bulke, A.;Verbeeck, R.;Schancht, E.
  29. Macromolecular Physics, Crytal Nucleation, Growth, Annealing v.2 Wunderlich, B.
  30. J. Control. Release v.49 Ha, J. H.;Kim, S. H.;Han, S. Y.;Sung, Y. K.;Lee, Y. M.;Kang, I. K.;Cho, C. S.
  31. Macromolecules v.30 Rager, T.;Meyer, W. H.;Wegner, G.;Winnik, M. A.
  32. Drug Dev. Ind. Pharm. v.18 Juliene, M. C.;Alonso, M. J.;Gomez Amoza, J. L.;Benoit, J. P.
  33. Int. J. Pharm. v.185 Matsumoto, J.;Nakada, Y.;Sakurai, K.;Nakamura, T.;Takahashi, Y.
  34. J. Control. Release v.39 Leroux, J. C.;Allemann, E.;Jaeghere, F. D.;Doelker, E.;Gurny, R.
  35. Colloid Polym. Sci. v.274 Kabalnov, A.;Lindman, B.;Olsson, U.;Piculell, L.;Thuresson, K.;Wennerstrom, H.
  36. Pharm. Acta Helv. v.71 Venier-Julienne, M. C.;Benoit, J. P.
  37. Biomaterials v.2 Pitt. C. G.;Gratzl, M. M.;Kimmel, G. L.;Surles, J.;Schindler, A.
  38. Long-Acting Contraceptive Delivery Systems Pitt, C. G.;Schindler, A.;Zatuchni, G. I.;Goldsmith, A.;Shelton, J. D.;Sciarra, J. J.(Ed.)

Cited by

  1. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. vol.16, pp.6, 2001, https://doi.org/10.1080/10611860802095494
  2. Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. vol.15, pp.7, 2001, https://doi.org/10.1080/10717540802321727
  3. Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelles vol.9, pp.31, 2001, https://doi.org/10.1039/c3sm27829h
  4. Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles vol.15, pp.23, 2001, https://doi.org/10.7314/apjcp.2014.15.23.10281
  5. Synthesis and self-assembly of amphiphilic poly(acrylicacid)–poly(ε-caprolactone)–poly(acrylicacid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin vol.29, pp.6, 2001, https://doi.org/10.1177/0885328214549612