DOI QR코드

DOI QR Code

Theoretical Studies on the Progonation Equilibria of Benzoyl Derivatives


Abstract

The effects of ortho- (R = H and CH3) and Y-substituents (Y = OCH3, CH3H and CN), which are directly attached to the carbonyl carbon, on the protonation equilibria of the para-X-substituted benzoyl derivatives, 4-X -2, 6-di-R-C6H2-C(=O)-Y, are investigated theoretically using the B3LYP method with 6-31+G* basis set. Structurally, both of the (B) and (BH+ ) forms in the species with R = H are nearly coplanar regardless of the Y-substituents implying that the steric repulsion between Y-substituent and R = H is relatively small. In the species with R = CH3 , the tortional angle (Θ) between the carbonyl moiety and aryl ring varies from zero to near right angle depending on the degree of steric repulsion between Y and R = CH3 and the resonance demand. However the reaction energies, ΔG°, for the protonation processes are more favorable for R = CH3 than for R = H due to stronger electron donating effect of R = CH3 , although the species with R = CH3 are unfavorable sterically. On the other hand, the Hammett type plots are progressively better correlated with б+ than with б values on going from Y = OCH3 to Y = CN for both species with R = H and CH3 indicating that the degree of resonance delocalization between carbonyl moiety and X-substituent is increased for a more electron accepting Y-substituent. Nevertheless the effects of R = CH3 on the magnitude of Hammett type reaction constants ( б or б+ ) are not much different from those of R = H.

Keywords

References

  1. Interscience Publisher In the Chemistry of Carbonyl Group Palm, V. A.;Haldna, U. L.;Talvik, A.;Parai, S.(ed.)
  2. J. Phys. Chem. A v.104 Lee, I.;Kim, C. K.;Lee, I. Y.;Kim, C. K.;
  3. Gaussian, Inc. Gaussian98, Revision A.6 Frischk, M. J.;Trucks, G> W.;Schlegel, H. B.;Schweria, G. E.;Robb, M. A.;Cheeseman, J. R.;Zakrzewski, V. G.;Montgomery, Jr., J. A.;Statmann, R. E.;Buramt, J. C.;Dapprich, S.;Millam, J. M.;Daniels, A. D.;Kudin, K. N.;Strain, M. C.;Rarkas, O.;Tomasi, J.;Barone, V.;Cossi, M.;Cammi, R.;Mennucci, B.;Pomelli, C.;Adamo, C.;Clifford, S.;Ochterski, J.;Petersson, G. A.;Ayala. P. Y.;Cui, Q.;Morokuma, K.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Foresman, J. B.;Cioslowski, J.;Ortiz, J. V.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P;Komaromi, I.;Gomperts, R.;Martin, R. L.;Fox, D. J.;Keith, T,; Al-Laham, M. A.;Peng, C. Y.;Nanayakkara, A.;Gonzalez, C.;Challacombe, M.;Gill, P. M. W.;Johnson, B.;chen, W.;Wong, M. W.;Andres, J. L.;Gonzalez, C.;Head Gordon, M.;Replogle, E. S.;Peple, J. A.
  4. Int. J. Quantum Chem. v.13 Pople, J. A.;Krishnan, R.;Schlegel, H. B.;Binkley, J. S.
  5. ibid v.15 Pople, J. A.;Schlegel, H. B.;Krishnan, R.;Defree, D. J.;Binkley, J. S.;Frisch, M. J.;Whiteside, R. A.;Haut, R. F.;Hehre, W.
  6. Gaussian Inc. Exploring Chemistry with ELectronic Structure Methods Foreman, J. B.;Frisch, A. E.
  7. J. Comput. Chem. v.19 Glendening, E. D.;Weinhold, F.
  8. ibid. v.19 Glendening, E. D.;Weinhold, F.
  9. ibid. v.19 Glendening, E. D.;Badelhoop, J. K.;Weinhold, F.
  10. Theretical Chemistry Institute NBO 4.M Glendening, E. D.;Badelhoop, J. K.;Reed, A. E.;Carpenter, J. E.;Weinhold, F.
  11. J. Am. Chem. Soc. v.102 Dao, L. H.;Maleki, M.;Hopkinson, A. C.;Lee-Ruff, E.
  12. J. Am. Chem. Soc. v.102 Paddon-Row, M.;Satiago, C.;Houk, K. N.
  13. J. Org. Chem. v.60 El-Nahas, A. M.;Clark, T.
  14. Submitted for publication Kim, C. K.;Han, I. S.;Lee, H. W.;lee, I.
  15. Bull korean Chem. Soc. v.21 Lee, I.;Rhee, S. K.;Kim, C. K.;Chung, D. S.;Kim, C. K.
  16. ibid. v.21 Sohn, C. K.;Lim, S. H.;Rhee, S. K.;Kim, C. K.;Kim. C. K.;Lee, i.
  17. Chem. Rev. v.91 The &σ^+$ and σ value HanSch, C.;Leo, A.;Taft, R. W.
  18. McGrawhill Physical Orgnic Chemistry Hammett, L. P.;
  19. J. Am. Chem. Soc. v.90 Swain, C. G.;Lupton, E. C.
  20. J. Am. Chem. Soc. v.105 Swain, C. G.;Unger, S. H.;Resenquist, N. R.;Swain, M. S.