DOI QR코드

DOI QR Code

Quantitative Structure-Activity Relationship(QSAR) Study of New Fluorovinyloxycetamides


Abstract

Quantitative Structure-Activity Relationship (QSAR) have been established of 57 fluorovinyloxyacetamides compounds to correlate and predict EC50 values. Genetic algorithm (GA) and multiple linear regression analysis were used to select the descriptors and to generate the equations that relate the structural features to the biological activities. This equation consists of three descriptors calculated from the molecular structures with molecular mechanics and quantum-chemical methods. The results of MLR and GA show that dipole moment of z-axis, radius of gyration and logP play an important role in growth inhibition of barnyard grass.

Keywords

References

  1. Proceedings I(A), Weed and Environmental Impact; The 17th Asian-Pacific Weed Sciemce Society Conference Matsumoto, H.
  2. Proceedings, The 12th Asian-Pacific Weed Science Society Conference Ito, S.;Kamochi, A.;Sawada, K.lGoto, T.;Yasui, K.
  3. PCT/KR 99/00116 Kim, B. T.;Park, N. K.lHeng, K. S.;Park, J. E.;Kwon, Y. W,
  4. KR Pat. v.98 Kim, B. T.;Park, N. K.lHeng, K. S.;Park, J. E.
  5. KR Pat. v.98 Kim, B. T.;Park, N. K.lHeng, K. S.;Kwon, Y. W.
  6. J. Am. Chem. Soc. v.86 Hansch. C.;Fukita, T.
  7. Elsevier: Amsterdam QSAR and Drug Design: New Developments and Applications Fukita, T.
  8. J. Med. Chem. v.20 Lee, D. L.;Killman, P. A.;Marsh, F. J.;Wolff, M. E.
  9. ESCOM:Leiden Hugo Kubiyi 3D QSAR in Drug Design: Theory, Methods and Applications
  10. J. Chem. Intell, Lab. Sys. v.45 Zhou, Y. X.;Xu, L.;Wu, Y. P.;Liu, B. I.
  11. J. Chem., Inf. Comput. Sci. v.39 Hou, T. J;Wang, J. M.;Liao, N.;Xu, X. J.
  12. Angrew. Chem., Int. Ed. Engl. v.32 Gasteiger, J.;Zupan, J.
  13. Bioorg. med. Chem. Lett. v.2 David, J.;David, W. S.
  14. v.6 J. Chemomertrics Leardi, R.;Boggia, R.;Terrile, M.
  15. J. Chem., Inf. Comput. Sci. v.24 David, R.;Hofinger, A. J.
  16. J. Am. Chem. Soc. v.97 Randic, M.
  17. J. Med. Chem. v.41 Clare, B. W.
  18. J. Anal. Chem. v.18 Baumann, R. M.
  19. J. Mol. Biol. v.171 Sweet, R. M.;Eisenberg, D.
  20. Inc. Gaussian 94, Revision D.2 Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Gill, P. M. W.;Johnson, B. G.;Robb, M. A.;Cheeseman, J. R.;Keith, T.;Petersson, G. A.;Montgomery, J. A.;Reghavachark, K.;Al-Laham, M. A.;Zakrzewski, V. G.;Ortiz, J. V.;Foresman, J. B.;Gioslowski, J.;Stefanov, B. B>;Nanauakkara, A.;Challacombe, M.;Peng, C. Y.;Ayala, P. Y.;Chen, W.;Wong, M. W.;Andres, J. L.;Repiogle, E. S.;Gomperts, R.;Martin, R. L..;Fox, D. J.;Binkley, J. S.;Defrees, D. J.;Baker, J.;Stewart, J. P.;Head-Gordon, M.;Gonzalez, C.;Pople, J. A.;Gaussian
  21. J. Comput. Chem. v.17 Halgren, T. A.
  22. J. Comput. Chem. v.17 Gundertofte, K.;Lijefors, Y.;Norrby, P. O.;Pettersson, I.
  23. J. Chem. Inf. Comput. Sci. v.23 Grandell, C. W.;Smith, D. H.
  24. J. Mol. Graphics v.5 Brint, A. T.;Willett, P.
  25. Melecular Simulations Inc. Gerius2 QSAR+(version 3.8)
  26. J. Med. Chem. v.22 Topliss, J. G.;Edwards, R. P.

Cited by

  1. Racemic Descriptors for Quantitative Structure Activity Relationship of Spirosuccinimide Type Aldose Reductase Inhibitors vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1874
  2. Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules vol.26, pp.3, 2005, https://doi.org/10.5012/bkcs.2005.26.3.399
  3. A QSAR study of substituted benzo[a]phenazines as potential anticancer agents vol.756, pp.1, 2001, https://doi.org/10.1016/j.theochem.2005.09.010
  4. QSAR AND MOLECULAR DESIGN OF BENZO[B]ACRONYCINE DERIVATIVES AS ANTITUMOR AGENTS vol.6, pp.2, 2001, https://doi.org/10.1142/s0219633607003039
  5. Prediction of Solubility of Nonionic Solutes in Anionic Micelle (SDS) Using a QSPR Model vol.27, pp.3, 2001, https://doi.org/10.1002/qsar.200730022
  6. QSAR study of substituted 2-pyridinyl guanidines as selective urokinase-type plasminogen activator (uPA) inhibitors vol.24, pp.1, 2001, https://doi.org/10.1080/14756360701810355
  7. DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect vol.23, pp.6, 2001, https://doi.org/10.1007/s10822-009-9265-4
  8. Insights through AM1 calculations into the structural requirement of N-hydroxythiosemicarbazone analogs as anti-tubercular agents vol.24, pp.3, 2001, https://doi.org/10.1080/14756360802421094
  9. Exploration of QSAR modelling techniques and their combination to rationalize the physicochemical characters of nitrophenyl derivatives towards aldose reductase inhibition vol.24, pp.4, 2001, https://doi.org/10.1080/14756360802565486
  10. Identification of KT-15073 as an Inhibitor of Lipopolysaccharide-Induced Microglial Activation vol.33, pp.3, 2001, https://doi.org/10.1248/bpb.33.461
  11. Quantitative structure-activity relationship study of nonpeptide antagonists of CXCR2 using stepwise multiple linear regression analysis vol.141, pp.1, 2010, https://doi.org/10.1007/s00706-009-0225-4
  12. Receptor-based QSAR study for a series of 3,3-disubstituted-5-aryl oxindoles and 6-aryl benzimidazol-2-ones derivatives as progesterone receptor inhibitors vol.22, pp.7, 2001, https://doi.org/10.1080/1062936x.2011.623324
  13. Topological, hydrophobicity, and other descriptors on α-glucosidase inhibition: a QSAR study on xanthone derivatives vol.26, pp.6, 2011, https://doi.org/10.3109/14756366.2010.549089
  14. 4D-QSAR Study of p56Ick Protein Tyrosine Kinase Inhibitory Activity of Flavonoid Derivatives Using MCET Method vol.32, pp.12, 2001, https://doi.org/10.5012/bkcs.2011.32.12.4352
  15. Prediction of the relationship between the structural features of andrographolide derivatives and α慣-glucosidase inhibitory activity: A quantitative structure-activity relationship (QSAR) Study vol.26, pp.1, 2001, https://doi.org/10.3109/14756361003724760
  16. A quantitative structure-property relationships study of the stability constant of crown ethers by molecular modelling: new descriptors for lariat effect vol.70, pp.1, 2001, https://doi.org/10.1007/s10847-010-9854-9
  17. QSAR study of a series of cholesteryl ester transfer protein inhibitors vol.76, pp.7, 2001, https://doi.org/10.1135/cccc2011019
  18. Simple QSPR Modeling for Prediction of the GC Retention Indices of Essential Oil Compounds vol.18, pp.6, 2001, https://doi.org/10.1080/0972060x.2014.884768