DOI QR코드

DOI QR Code

A Convenient Synthesis of 2-Methylenealkanoaates and Alkanenitriles from the Acetates of the Baylis-Hillman Adducts


Abstract

Keywords

References

  1. Terahedron v.44 Drewes, S. E.;Roos, G. H. P.
  2. Terahedron v.52 Basavaiah, D.:Rao, P. D.;Huma, R. S.
  3. Wiley v.51 In Organic Reactions Ciganek, E.;Paquette, L. A.(ed.)
  4. Tetrahedron Lett v.41 Kim, H. S.;Kim, T. Y.;Lee, K. Y.;Chung, Y. M.;Lee, H. J.;Kim, J. N.
  5. Bull Korean Chem. Soc. v.21 Lee, H. J.;Chung, Y. M.;Lee, K. Y.;Kim, H. N.
  6. Org. Lett. v.2 Kim, J. N.;Lee, K. Y.;Kim, H. S.;Kim, T. Y.
  7. Terahedron lett. v.40 Lee, H. J.;Kim H. S.;Kim, J. N.
  8. Terahedron Lett. v.40 Lee, H. J.;Seong, M. R;Kim, J. N.
  9. Terahedron Lett. v.39 Lee, H. J.;Seong, M. R;Kim, J. N.
  10. Terahedron Lett. v.42 Basavaiah, D.;Kumaragurubaran, N.
  11. J. Am. Chem. Soc. v.122 Trost. B. M.'Tusi, H. C.;Toste, F. D.
  12. Tetragedron v.50 Mason, P. H.;Emislie, N. D.
  13. Synth. Commun v.30 Drewes, S. e.;horn. M. M.;Ramesaur, N.
  14. Terahedron Lett. v.42 Basavaiah, D.;Kumaragurubaran, N.;Sharada, D. S.
  15. Terahedron Lett. v.39 Pachamuthu, K.;Vankar, Y. D.
  16. J. Med. Chem. v.29 Ho, W.;Tutwiler, G. F.;Cottrell, S. C.;Morgans, D. J.;Tarhan, O.;Mohrbacher, R. J.
  17. J. Org. Chem. v.62 Jimenez, O.;Bosch, M. P;Guerrero, A.
  18. Tetrahedron: Axymmetry v.1 Prasad. K.;Estermann, H.;Chen, C. P;Repic, O.;Hardmann, G. E.
  19. Terahedron Lett. v.30 Drilley, M. M. L.;Edmunds, A. J. F.;Eistetter, K.;Golding, B. T.
  20. J. Org. Chem. v.59 Ruano, J. L. G.;Castro, A. M. M.;Rodriguez, J. H.
  21. J. Med. Chem. v.30 Ho, W.;Tarhan, O.;Kiorpes, T. C.;Tutwiler, G. F.;Mohrbacher, R. J.
  22. The salts derived from th acetates 1and DBU decomposed slowly in aqueous THEF. When we use DMAP instead of DABCO, similar salt formation and clear reduction was observed.However, the use of DABCO is better in view of wields(see entry 3 in Table 1) and reaction time.
  23. J. Chem. Soc.,Chem. Commun Borner, C.;Gimeno, J.;Gladiali, S.;Goldsmith, P. J;Ramazzotti, D.;Woodward, S. J.
  24. For further refernces for the synthesis of ally bromides, see reference 1c. v.74 Helv. Chim. Acta Buchhoolz. R.;Hoffmann, H. M. R.

Cited by

  1. Facile Syntheis of 5-Arylpent-4-enoates from the Baylis-Hillman Acetates vol.23, pp.10, 2002, https://doi.org/10.5012/bkcs.2002.23.10.1361
  2. The Reaction of Heterocyclic Nucleophiles and the DABCO Salts of the Baylis-Hillman Acetates vol.23, pp.6, 2002, https://doi.org/10.5012/bkcs.2002.23.6.789
  3. Synthesis of Ethyl 2-Methylene-3-aryl-4-oxoalkanoates and Ethyl 2-Arylidene-4-oxoalkanoates from the Baylis-Hillman Acetates vol.23, pp.5, 2001, https://doi.org/10.5012/bkcs.2002.23.5.657
  4. Synthesis of 4H-tetrazolo[1,5-a][1]benzazepines from the baylis-hillman adducts of 2-azidobenzaldehyde vol.40, pp.6, 2001, https://doi.org/10.1002/jhet.5570400622
  5. One-Pot Synthesis of 5-Arylpent-4-enoate Derivatives from Baylis-Hillman Acetates: Use of Phosphorous Ylide vol.24, pp.4, 2001, https://doi.org/10.5012/bkcs.2003.24.4.511
  6. Synthesis of Highly Functionalized 3,4-Dihydro-2H-pyrans from Baylis-Hillman Acetates vol.25, pp.11, 2001, https://doi.org/10.5012/bkcs.2004.25.11.1733
  7. Facile Synthesis of Baylis-Hillman Adducts Bearing the Carbamate or Amide Functional Group at the Secondary Position vol.25, pp.12, 2001, https://doi.org/10.5012/bkcs.2004.25.12.1966
  8. Synthesis of 4-Methylene-2-cyclohexenones and Their Aromatization Reaction toward para-Methoxylmethyl Anisole Derivatives vol.25, pp.2, 2001, https://doi.org/10.5012/bkcs.2004.25.2.328
  9. Synthesis of Substituted Cyclopentenes from the Baylis-Hillman Adducts via Ring-Closing Metathesis Reaction vol.25, pp.8, 2001, https://doi.org/10.5012/bkcs.2004.25.8.1280
  10. Synthesis of Substituted Uracil Derivatives from the Acetates of the Baylis-Hillman Adducts vol.26, pp.3, 2001, https://doi.org/10.5012/bkcs.2005.26.3.481
  11. Synthesis of Methyl (E)-2-Cyanomethylcinnamates Derived from Baylis-Hillman Acetates and Conversion into Several 4-Hydroxy-2-naphthoic Acids and Benzylidenesuccinimides vol.26, pp.4, 2001, https://doi.org/10.5012/bkcs.2005.26.4.655
  12. All-Carbon Intramolecular Conjugate Displacement Reactions: An Effective Route to Carbocycles vol.119, pp.48, 2001, https://doi.org/10.1002/ange.200703022
  13. All-Carbon Intramolecular Conjugate Displacement Reactions: An Effective Route to Carbocycles vol.46, pp.48, 2001, https://doi.org/10.1002/anie.200703022
  14. Preparation of 2‐Quinolones by Sequential Heck Reduction–Cyclization (HRC) Reactions by Using a Multitask Palladium Catalyst vol.15, pp.29, 2001, https://doi.org/10.1002/chem.200900583
  15. SN2’ versus SN2 Reactivity: Control of Regioselectivity in Conversions of Baylis–Hillman Adducts vol.16, pp.4, 2010, https://doi.org/10.1002/chem.200902487
  16. Expeditious Synthesis of Imidazole‐ and Pyrrole‐Fused Benzodiazocines vol.2010, pp.25, 2010, https://doi.org/10.1002/ejoc.201000355
  17. Organocatalytic asymmetric transformations of modified Morita–Baylis–Hillman adducts vol.41, pp.11, 2012, https://doi.org/10.1039/c2cs35017c
  18. One‐Pot Preparation of Chiral Carbacycles from Morita–Baylis–Hillman Carbonates by an Asymmetric Allylic Alkylation/Olefin Metathesis Sequence vol.2014, pp.30, 2001, https://doi.org/10.1002/ejoc.201402899