DOI QR코드

DOI QR Code

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol


Abstract

The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

Keywords

References

  1. J. Photochem. Photobiol, B: Biol v.34 Schuitmaker, J. J;Baas, P;van Leengoed, H. L. L. M;van der Meulen, F. W;Star, W. M;van Zandwijk, N
  2. Photochem. Photobiol. A: Chem v.102 Roman, E. S
  3. Drugs v.57 Hsi, R. A;Rosenthal, D. I;Glatstein, E
  4. Photochem. Photobiol. B: Biol v.36 Jori, G
  5. J. Photochem. Photobiol. B: Biol v.39 Ochsner, M
  6. J. Photochem. Photobiol. B: Biol v.33 Zenkevich, E;Sagun, E;Knyukshto, V;Shulga, A;Mironov, A;Efremova, O;Bonnett, R;Songca, S. P;Kassem, M
  7. Photochem. Photobiol v.63 Pal, P;Zeng, H;Durocher, G;Girard, D;Li, T;Gupta, A. K;Giasson, R;Blanchard, L;Gaboury, L;Balassy, A;Turmel, C;Laperriere, A;Villeneuve, L
  8. Angew. Chem. Int. Ed. Engl v.36 Srinivasan, A;Reddy, V. M;Narayanan, S. J;Sridevi, B;Pushpan, S. K;Ravikumar, M;Chandrashekar, T. K
  9. Biochim, Biophys, Acta v.1199 Kriege, M;Bilitz, J. M;Srichai, M. B;Redmond, R. W
  10. Bull. Korean Chem. Soc v.21 Shin, K;Oh, J. H
  11. J. Chem. Soc., Faraday I v.76 Harriman, A
  12. J. Chem. Soc. Faraday Trans. 2 v.77 Harriman, A;Hosie, R. J
  13. J. Photochem. Photobiol. A: Chem v.62 Pal, H;Palit, D. K;Mukherjee, T;Mittal, J. P
  14. J. Am. Chem. Soc. v.94 Merkel, P. B;Kearns, D. R
  15. J. Photochem. Photobiol. B: Biol v.37 Fernandez, J. M;Bilgin, M. D;Grossweiner, L. I
  16. Photochem. Photobiol v.54 Terazima, M;Tonooka, M;Azumi, T
  17. J. Phys. Chem v.95 Terazima, M;Hirota, N;Shinohara, H;Saito, Y
  18. J. Phys. Chem v.96 Terazima, M;Hirota, N
  19. J. Am. Chem. Soc. v.114 Martire, D. O;Jux, N;Aramendia, P. F;Negri, R. M;Lex, J;Braslavsky, S. E;Schaffner, K Vogel, E
  20. J. Am. Chem. Soc v.116 Gentemann, S;Medforth, C. J;Forsyth, T. P;Nurco, D. J;Smith, K. M;Fajer, J;Holten, D
  21. Handbook of Photochemistry Murov, S. L;Carmichael, I;Hug, G. L
  22. J. Phys. Chem. v.101 Wilkinson, F;Abdel-Shafi, A. A
  23. J. Phys. Chem. v.103 Wilkinson, F;Abdel-Shafi, A. A
  24. J. Phys. Chem v.104 Abdel-Shafi, A. A;Beer, P. D;Mortimer, R. J;Wilkinson, F
  25. J. Phys. Chem v.98 Wilkinson, F;McGarvey, D. J;Olea, A. F
  26. Tetrahedron v.55 Srinivasan, A;Pushpan, S. K;Ravikumar, M;Chandrashekar, T. K;Roy, R
  27. J. Phys. Chem v.103 Darmanyan, A. P;Lee, W;Jenks, W. S
  28. J. Phys. Chem v.100 Tanielian, C;Wolff, C;Esch, M
  29. J. Phys. Chem v.97 Darmanyan, A. P;Foote, C. S

Cited by

  1. Photophysical Efficiency Factors of Singlet Oxygen Generation from Core-modified Trithiasapphyrin Derivatives vol.23, pp.2, 2002, https://doi.org/10.5012/bkcs.2002.23.2.281
  2. Time-Resolved Thermal Lensing Studies on Metastable Species vol.50, pp.1, 2001, https://doi.org/10.1002/jccs.200300004
  3. Noncovalently Linked Zinc Porphyrin-Ru(bpy)3 Dyad Assembled via Axial Coordination vol.24, pp.10, 2001, https://doi.org/10.5012/bkcs.2003.24.10.1490
  4. Multicomponent Donor−Acceptor Relay System Assembled within the Cavities of Zeolite Y. Photoinduced Electron Transfer between Ru(bpy)32+ and 2,4,6-Triphenylpyrylium in vol.108, pp.43, 2004, https://doi.org/10.1021/jp049520x
  5. A Spectroscopic Study on Singlet Oxygen Production from Different Reaction Paths Using Solid Inorganic Peroxides as Starting Materials vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1656
  6. Ein kernmodifiziertes Rubyrin mit meso-Aryl-Subsituenten und Phenanthren-anellierten Pyrrolringen als hoch konjugierter NIR-Farbstoff und Hg2+-Sonde vol.120, pp.1, 2001, https://doi.org/10.1002/ange.200702854
  7. A Core-Modified Rubyrin with meso-Aryl Substituents and Phenanthrene-Fused Pyrrole Rings: A Highly Conjugated Near-Infrared Dye and Hg2+ Probe vol.47, pp.1, 2001, https://doi.org/10.1002/anie.200702854
  8. Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2) vol.33, pp.5, 2001, https://doi.org/10.5012/bkcs.2012.33.5.1608
  9. Photophysical properties and singlet oxygen generation ofmeso-iodinated free-base corroles vol.9, pp.22, 2001, https://doi.org/10.1039/c9ra00928k