References
- J. Phys. Chem. v.90 Wang, J. X.;Lunsford, J. H.
- Chem. Soc. Rev. v.18 Hutchings, G. J.;Scurell, M. S.;Woodhouse, J. R.
- Catal. Rev. v.28 Pitchai, R.;Klier, K.
- Science & Technology v.5 Catalytic Steam Reforming Catalysis Rostrup-Nielsen, J. R.;Anderson, J. R.(Ed.);Boudart, M.(Ed.)
- Nature v.344 Ashcroft, A. T.;Cheetham, A. K.;Foord, J. S.;Green, M. L. H.;Grey, C. P.;Murrell, A. J.;Vernon, P. D. F.
- Angew. Chem. Int. Ed. v.31 Choudhary, V. R.;Mamman, A. S.;Sansare, D.
-
Appl. Catal. A
v.144
Pe
$\~{n}$ a, M. A.;Gomez, J. P.;Fierro, J. L. G. - J. Catal. v.172 Choudhary, V. R.;Uphade, B. S.;Mamman, A. S.
- Appl. Catal. A v.183 Ruckenstein, E.;Hu, Y. H.
- Catal. Today v.46 Diskin, A. M.;Cunningham, R. H.;Ormerod, R. M.
- Catal. Lett. v.51 Tang, S.;Lin, J.;Tan, K. L.
- Science v.259 Hickman, D. A.;Schmidt, L. D.
- Catal. Lett. v.8 Jones, R. H.;Aschroft, A. T.;Waller, D.;Cheetham, A. K.;Thomas, J. M.
- J. Catal. v.138 Schmidt, L. D.;Hichman, D. A.
- J. Catal. v.146 Tornianan, P. M.;Chu, X.;Schmidt, L. D.
- Nature v.352 Ashcroft, A. T.;Cheetham, A. K.;Green, M. L. H.;Vernon, P. D. F.
- Angew. Chem. Int. Ed. v.33 Choudhary, V. R.;Rajput, A. M.;Prabhakar, B.
- Catal. Today v.42 Hegarty, M. E. S.;O’Connor, A. M.;Ross, J. R. H.
- Catal. Lett. v.32 Choudhary, V. R.;Rajput, A. M.;Prabhakar, B.
- Catal. Lett. v.74 Roh, H.-S.;Jun, K.-W.;Dong, W.-S.;Park, S.-E.;Baek, Y.-S.
- Chem. Lett. Roh, H.-S;Dong, W.-S.;Jun, K.-W.;Park, S.-E.
- Appl. Catal. A v.145 Chang, J.-S.;Park, S.-E.;Chon, H.
- J. Catal. v.65 Bartholomew, C. H.;Pannell, R. B.
- J. Catal. v.158 Au, C. T.;Wang, H. Y.;Wan, H. L.
- Stud. Surf. Sci. Catal. v.68 Rostrup-Nielsen, J. R.
- Oil Gas J. v.90 Udengaard, N. R.;Hansen, J.-H. B.;Hanson, D. C.;Stal, J. A.
- Appl. Catal. A v.136 Yamazaki, O.;Tomishige, K.;Fujimoto, K.
Cited by
- Partial oxidation of methane over nickel catalysts supported on various aluminas vol.19, pp.5, 2001, https://doi.org/10.1007/bf02706961
- Partial Oxidation of Methane over CeO2 Catalyst vol.23, pp.6, 2001, https://doi.org/10.5012/bkcs.2002.23.6.799
- Partial Oxidation of Methane over Ni/SiO2 vol.23, pp.5, 2001, https://doi.org/10.5012/bkcs.2002.23.5.669
- Reaction mechanism of partial oxidation of methane to synthesis gas over supported ni catalysts vol.20, pp.6, 2001, https://doi.org/10.1007/bf02706931
- A semiempirical theoretical study of Ni/α-Al2O3 and NiSn/α-Al2O3 catalysts for CH4 reforming vol.202, pp.1, 2001, https://doi.org/10.1016/s1381-1169(03)00195-x
- Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor vol.28, pp.9, 2003, https://doi.org/10.1016/s0360-3199(02)00195-7
- Methane-reforming reactions over Ni/Ce-ZrO2/θ-Al2O3 catalysts vol.251, pp.2, 2001, https://doi.org/10.1016/s0926-860x(03)00359-4
- A highly active catalyst, Ni/Ce–ZrO2/θ-Al2O3, for on-site H2 generation by steam methane reforming: pretreatment effect vol.28, pp.12, 2001, https://doi.org/10.1016/s0360-3199(03)00029-6
- Low Temperature Methane Steam Reforming for Hydrogen Production for Fuel Cells vol.30, pp.1, 2001, https://doi.org/10.5012/bkcs.2009.30.1.153
- Ni Catalyst Coating on Fecralloy® Microchanneled Foils and Testing for Methane Steam Reforming vol.33, pp.1, 2001, https://doi.org/10.1002/ceat.200900439
- Active and Stable Ni‐MgO Catalyst Coated on a Metal Monolith for Methane Steam Reforming under Low Steam‐to‐Carbon Ratios vol.35, pp.12, 2001, https://doi.org/10.1002/ceat.201200259
- A new reactor concept for combining oxidative coupling and steam re‐forming of methane: modeling and analysis vol.37, pp.2, 2013, https://doi.org/10.1002/er.1881
- Oxy-Steam Reforming of Natural Gas on Ni Catalysts-A Minireview vol.10, pp.8, 2001, https://doi.org/10.3390/catal10080896