DOI QR코드

DOI QR Code

Characterization of Zirconium Sulfate Supported on Zirconia and Activity for Acid Catalysis


Abstract

Zirconium sulfate supported on zirconia catalysts were prepared by impregnation of powdered $Zr(OH)_4$ with zirconium sulfate aqueous solution followed by calcining in air at high temperature. The characterization of prepared catalysts was performed using Fourier transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and by the measurement of surface area. The addition of zirconium sulfate to zirconia increased the phase transition temperature of $ZrO_2$ from amorphous to tetragonal due to the interaction between zirconium sulfate and zirconia, and the specific surface area and acidity of catalysts increased in proportion to the zirconium sulfate content up to 10 wt% of $Zr(SO_4)_2$. Infrared spectra of ammonia adsorbed on $Zr(SO_4)2}ZrO_2$ showed the presence of Bronsted and Lewis acid sites on the surface. $10-Zr(SO_4)_2}ZrO_2$ calcined at $600^{\circ}C$ exhibited maximum catalytic activities for 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acidity of catalysts measured by ammonia chemisorption method.

Keywords

References

  1. J. Catal. v.127 Sohn, J. R.;Pae, Y. I.;Jang, H. J.;Park, M. Y.
  2. Langmuir v.9 Sohn, J. R.;Ryu, S. G.
  3. J. Catal. v.83 Kayo, A.;Yamaguchi, T.;Tanabe, K.
  4. New Solid Acids and Base Tanabe, K.;Misono, M.;Ono, Y.;Hattori, H.
  5. Adv. Catal. v.37 Arata, K.
  6. J. Catal. v.150 Ward, D. A.; Ko, E. I.
  7. J. Catal. v.169 Vaudagna, S. R.;Comelli, R. A.;Canavese, S. A.;Figoli, N. S.
  8. J. Catal. v.150 Kustov, L. M.;Kazansky, V. B.;Figueras, F.;Tichit, D.
  9. J. Catal. v.167 Sayari, A.;Yang, Y.;Song, X.
  10. J. Chem. Soc., Chem. Commun. Hsu, C. Y.;Heimbuch, C. R.;Armes, C. T.;Gates, B. C.
  11. J. Catal. v.168 Cheung, T. K.;Gates, B. C.
  12. Prepr. Symp. Div. Petr. Chem. Hosoi, T.;Shimadzu, T.;Ito, S.;Baba, S.;Takaoka, H.;Imai, T.;Yokoyama, N.
  13. J. Catal. v.130 Ebitani, K.;Konishi, J.;Hattori, H.
  14. J. Catal. v.167 Signoretto, M.;Pinna, F.;Strukul, G.;Chies, P.;Cerrato, G.;Ciero, S. D.;Morterra, C.
  15. J. Chem. Soc., Chem. Commun. Hino, M.;Arata, K.
  16. Proc. 11th Int. Congr. Catal. Larsen, G.;Lotero, E.;Parra, R. D.
  17. Bull. Chem. Soc. Jpn. v.63 Arata, K.;Hino, M.;Yamagata, N.
  18. Bull. Korean Chem. Soc. v.21 Sohn, J. R.;Park, W. C.
  19. Bull. Korean Chem. Soc. v.20 Sohn, J. R.;Park, W. C.
  20. J. Catal. v.159 Sohn, J. R.;Cho, S. G.;Pae, Y. I.;Hayashi, S.
  21. J. Ind. Eng. Chem. v.4 Sohn, J. R.;Park, M. Y.
  22. Appl. Catal. A: General v.128 Sohn, J. R.;Kim, H. W.;Park, M. Y.;Park, E. H.;Kim, J. T.;Park, S. E.
  23. J. Catal. v.9 Saur, O.;Bensitel, M.;Saad, A. B. H.;Lavalley, J. C.;Tripp, C. P.;Morrow, B. A.
  24. J. Catal. v.107 Morrow, B. A.;McFarlane, R. A.;Lion, M.;Lavalley, J. C.
  25. Appl. Catal. v.61 Yamaguchi, T.
  26. J. Catal. v.169 Larsen, G.;Lotero, E.;Petkovic, L. M.;Shobe, D. S.
  27. J. Chem. Soc. Faraday Trans. v.90 Afanasiev, P.;Geantet, C.;Breysse, M.;Coudurier, G.;Vedrine, J. C.
  28. Appl. Catal. A: General v.164 Sohn, J. R.;Lee, S. Y.
  29. J. Phys. Chem. v.71 Basila, M. R.;Kantner, T. R.
  30. J. Phys. Chem. v.92 Satsuma, A.;Hattori, A.;Mizutani, K.;Furuta, A.;Miyamoto, A.;Hattori, T.;Murakami, Y.
  31. Science v.206 Olah, F. G. A.;Prakash, G. K. S.;Sommer, J.
  32. J. Mol. Catal. v.64 Sohn, J. R.;Jang, H. J.
  33. J. Catal. v.101 Decanio, S. J.;Sohn, J. R.;Paul, P. O.;Lunsford, J. H.
  34. Solid Acids and Bases Tanabe, K.
  35. J. Catal. v.61 Sohn, J. R.;Ozaki, A.

Cited by

  1. Effect of synthesis conditions for phosphated mesoporous zirconium dioxide on formation of its structure and adsorption properties vol.42, pp.1, 2001, https://doi.org/10.1007/s11237-006-0018-3
  2. A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment vol.116, pp.2, 2001, https://doi.org/10.1016/j.cattod.2006.01.025
  3. Development of Mesoscopically Assembled Sulfated Zirconia Nanoparticles as Promising Heterogeneous and Recyclable Biodiesel Catalysts vol.5, pp.10, 2001, https://doi.org/10.1002/cctc.201300192
  4. Influence of Molybdenum Content and MoO $ x^{y-}$ Species on the Textural and Structural ZrO2Properties vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/432031
  5. Effect of Sulfation on Zirconia-Pillared Montmorillonite to the Catalytic Activity in Microwave-Assisted Citronellal Conversion vol.2014, pp.None, 2001, https://doi.org/10.1155/2014/950190
  6. Novel sulphated zirconia pillared clay nanoparticles as catalyst in microwave assisted conversion of citronellal vol.31, pp.4, 2001, https://doi.org/10.1179/1753555715y.0000000045
  7. Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia vol.7, pp.7, 2017, https://doi.org/10.3390/catal7070204
  8. A Kinetic Investigation of Triacetin Methanolysis and Assessment of the Stability of a Sulfated Zirconium Oxide Catalyst vol.95, pp.7, 2001, https://doi.org/10.1002/aocs.12085
  9. Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries vol.450, pp.None, 2001, https://doi.org/10.1016/j.jpowsour.2019.227625