Enterobactin Analogues Prepared by Cross-Linking Catechol Derivative with cis,cis-1,3,5-Tris(aminomethyl)cyclohexane

Jae Chun Ryu, Hyo Nim Shin, Dong Hee Kim, and Sang Hee Lee*
Department of Chemistry, Kunsan National Universito, Kunsan 573-701, Korea
Received September 13. 2001

Keywords: Enterobactin, Iron(III) sequestering agent, cis,cis-1,3,5-Tris(aminomethyl)cyclohexane, Catechol.

Enterobactin (Ent) is a representative tricatecholate siderophore produced from Escherichia coll and related bacteria under iron-deficient conditions. ${ }^{1}$ In the treatment of ironoverload diseases, there is a critical need for effective chelating. ${ }^{2}$ Thus, considerable attention has been paid to the design and synthesis of Ent analogues. To probe the design features of Ent, many synthetic tris-catecholamide analogues based on tripodal ${ }^{3}$ and macrocyclic ${ }^{4}$ skeletons have been synthesized. One of the best analogues, MECAM, was extensively studied by Raymond. ${ }^{5}$ Structurally similar (Et); MECAM ${ }^{6}$ showed a 10^{4} increase relative to MECAM. This enhanced stability compared to MECAM is attributed predominantly to entropy. However, (Et) $\mathrm{B}_{\mathrm{MECAM}} \mathrm{Fe}$ was one hundred times less stable than Ent-Fe. In the structure of the X-ray crystal structure of its vanadium(VI) complex, ${ }^{7}$ benzylic carbons deviate $\left(\cdots 13^{\circ}\right)$ from the benzene plane. Since such deviations increase ring strain markedly, due to the rigidity of the benzene ring, we report here the synthesis of 19 and lb, in which a cyclohexane ring replaces the benzene ring in MECAM (Figure 1). We hoped that the flexibility introduced by this replacement would reduce ring strain in the complex.

The synthetic route of $\mathbf{1 a}$ and $\mathbf{1 b}$ was outlined in Scheme 1. Synthesis of triamine $\mathbf{3 a}$ from commercially available cis,cis-1,3,5-cyclohexanetricarboxylic acid 2a was accomplished in 68% overall yield in 4 steps. Activated ester 5 was prepared from 1,2-dihydroxy benzoic acid according to the known procedure. ${ }^{3}$ 3a and 5 was coupled and debenzylated by catalytic hydrogenolysis to obtain $1 a^{8}$ in 60% overall yield from $\mathbf{2 a}$. $\mathbf{1 b ^ { 9 }}$ was prepared from cyclohexanetricarboxylic acid $2 \mathbf{b}$ according to the same procedure as in the preparation of $\mathbf{1 a}$.
Using previously described procedure, ${ }^{10}$ the $K_{\mathcal{\prime}}$ values of 1a and 1b were estimated. With the K_{f} being accurately

Figure 1. Structure of Enterobactin and its analogues.

[^0]

Scheme 1. Reagents and Conditions: (a) i. BII I_{3} - THI: reflux. I6h: ii. TsCl/pyridinc. rt. 3 h : iii. $\mathrm{VaN}_{3} / \mathrm{DMF} .70^{\circ} \mathrm{C} .16 \mathrm{~h}$; iv. H_{2} (atm). $\mathrm{Pd} / \mathrm{C}(10 \%) / \mathrm{MeOH}$, rt. $5 \mathrm{~h}:$ (b) i. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, ~ r t . ~ 6 h ; ~ i i . ~ P d / C ~(10 \%) / ~$ MeOII. rt. 5 h .
determined, MECAM was used as a reference to determine the K_{l} values of $\mathbf{1 a}$ and $\mathbf{1 b}$. Analogues 1a, $\mathbf{1 b}$ and MECAM were subjected to the competition experiments against EDTA $\left(K_{f} \cdots 10^{25}\right)^{11}$ for $\mathrm{Fe}(\mathrm{III})$. The absorbance with no EDTA added was the reference and the decrease in absorbance, where a particular concentration of EDTA was added, was presented in percentage, as shown in Table 1. The proton dependent formation constant, K^{*}, can be calculated from eq I: ($[\mathrm{Fe}-$ $\left.\left.\mathrm{L}^{3-}\right]\left[\mathrm{H}^{+}\right]^{6}\left[\mathrm{EDTA}^{+-}\right]\right) /\left(\left[\mathrm{Fe}-\mathrm{ED}^{-} \mathrm{AA}^{-}\right]\left[\mathrm{H}_{(1)} \mathrm{L}\right]=K^{*} / K_{\mid \text {e-L()|A }}\right.$, where $K_{\text {le-EUA }}=10^{25}$, and $K^{*}=\left(\left[\mathrm{Fe}^{5-}{ }^{5-}\right]\left[\mathrm{H}^{-}\right]^{6}\right) /\left(\left[\mathrm{Fe}^{3-}\right]\left[\mathrm{H}_{6} \mathrm{~L}\right]\right)$. Assuming the overall $\mathrm{p} K_{\mathrm{a}}$ values for $1 \mathbf{a}-\mathrm{Fe}, 1 \mathbf{b}-\mathrm{Fe}$, and MECAM-Fe are the same. ${ }^{5.10}$ the difference in order of magnitudes of K * is, therefore, also the difference in order of magnitude of $K /$, where, the proton-independent formation contant. $K_{l}=\left[\mathrm{Fe}^{-\mathrm{L}^{3-}}\right] /\left(\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{L}^{6-}\right]\right)=\left(K^{*}\left[\mathrm{H}_{6} \mathrm{~L}\right] /\left(\left[\mathrm{H}^{-}\right]^{6}\left[\mathrm{~L}^{0-}\right]\right)\right.$. Knowing that the K_{i} for MECAM-Fe is 10^{+3}, the K_{i} values for $\mathbf{1 a - F e}$ and $\mathbf{1 b - F e}$ are estimated on the differences, in order of magnitude (Table I).

Both ligands 1a and 1b had higher affinities ($K_{f}=10^{44.0}$ and $K_{i}=10^{43}$, respectively) for $\mathrm{Fe}(I I I)$ than $\operatorname{MECAM}\left(K_{i}=\right.$ $10^{13.9}$). To compare the strain energy of ferric complexes,

Table 1. Decrease (\%) of Absorbance ${ }^{\text {th }}$ upon Addition of [EDTA] to $\mathrm{L}-\mathrm{Fe}^{i-c}$ Complex ${ }^{t}$

Concentration of IIDTA (mM)	1a-Fc	1b-Fc	MECAM-Fe
0.25	8.2	15.2	19.5
0.5	9.4	20.1	22.5
2.5	13.8	27.2	35.2
3.75	14.8	29.5	44.9
Estimated $\mathbf{l o g}_{o 10} \boldsymbol{K}_{\mathrm{f}}$	$\mathbf{4 4 . 0}$	43.3	$\mathbf{4 3 . 0} \mathbf{0}^{\boldsymbol{c}}$

"Relative to the absorbance where no filla was added. "At mas $=49.5$ mon. at pII7. '[L.igand $]_{\text {total }}=\left[\Gamma \mathrm{e}^{51}\right]_{\text {eteal }}=0.1 \mathrm{~m} . \mathrm{M}$. ${ }^{\text {'I }} \mathrm{In} 0.01 \mathrm{M}$ phosphate buller, $\mu-0.1 \mathrm{MKNO}=25^{\circ} \mathrm{C}$. Relerance 5.

Ent-V(4.82A)

N'HR

Figure 2. Average N - V distance in spacers of Ent and its analogues. The structure of Ent is in its vanadium(IV) complex state and the structures of analogues are in metal free state.
$N-N$ distances of spacers were evaluated. Energy minimized structures ${ }^{12}$ of MECAM. 1a and 1b, in which three catechol moieties were oriented suitably for formation of ferric complexes. were estimated to have $N-N$ distances of $5.84 \AA$. $5.40 \AA$ and $4.67 \AA$ respectively (Figure 2). In order to achieve optimum metal-ligand interaction, the three binding anns of MECAM have to bend inward. This bending caused large deviations of the benzylic carbons from the plane of the benzene ring. Due to the rigidity of benzene, distortions can increase ring strain energy seriously in MECAM-Fe as shown in (Et) ${ }_{3} \mathrm{MECAM}-\mathrm{V}$. In 1a-Fe complex a lower degree of deviation is expected compared to MECAM-Fe because the $N-N$ distance of $1 \mathbf{a}(5.40 \AA)$ is much closer to that of Ent$\mathrm{V}(4.82 \mathrm{~A})$ than that of MECAM $(5.8+\AA)$. These positive enthalpic contributions. reduced $N-N$ distance and reduced ring strain. overcome the negative entropic contribution from the conformational flexibility of the cyclohexane ring. in formation of the $1 \mathrm{a}-\mathrm{Fe}$ complex.
The introduction of methyl groups at $1,3.5$-positions of the cyclohexane ring in 1b makes the $N-N$ distance ($4.67 \AA$) almost equivalent to that of Ent-Fe (4.82 A). In addition to this positive enthalpic contribution, considering predisposition effect of methyl group. the higher stability of $\mathbf{1 b}-\mathrm{Fe}$. compared to $1 \mathrm{a}-\mathrm{Fe}$, was expected. as in the stability of $(\mathrm{Et})_{3} \mathrm{MECAM}^{6} v$. MECAM. However, competition experiments gave the reverse result: 1a-Fe was slightly more stable than $\mathbf{1 b}-\mathrm{Fe}$. The lower stability of $\mathbf{1 b}-\mathrm{Fe}$ can be explained by 1,3-diaxial steric strain caused by the methyl groups. In the ring flip of the cyclohexane ring of 1a, 1a-eq. in which confornation of catechol moieties is equatorial, is much more stable than 1a-ax (Figure 3). In the case of $\mathbf{1 b}$ ($\mathrm{R}=$ CH_{3}). 1.3-diaxial steric strain of methyl groups destabilize $\mathbf{1 b}$-eq. The increase of $\mathbf{1 b}$-ax is unfavorable for the formation of the ferric complex owing to its ligh strain energy. Thus. the predisposition effects of methyl groups in positioning the catechols and the enthalpic contribution based on N - N distance are overpowered by 1,3 -diaxial steric strain of methyl groups.

In conclusion, our prediction of a high stability 1a-Fe complex, based on the flexibility of the cyclohexane ring

Figure 3. Effect of methyl groups on the conformation of 1b: 1aax and $\mathbf{1 b}$-ax are unfavorable for formation of ferric complex due to its high ring strain.
compared to the rigid benzene ring, was proved correct. However. the expected positive contribution of $1.3,5$-substituents on the cyclohexane of $\mathbf{1 b}$ was not observed cis, cis-1.3.5-Tris(aminomethyl)cyclohexane (3a) is a good spacer for Ent analogues, considering the high stability of the $1 \mathrm{a}-\mathrm{Fe}$ complex and easy preparation of this compound. In addition. 3a can be used to design Pu-sequestering agents because of the similarity in the coordination properties of Fe (III) and Pu (IV). ${ }^{14}$ Furthermore. 3a can be used as a spacer with other donor units for the complexation of noble metals $\mathrm{Pd}, \mathrm{Pt}, \mathrm{Rh}$. etc..15 in modify ing other benzene-based tripodal ligands for molecular recognition. ${ }^{16}$ Modification of cyclohexane ring spacer is currently under study.

Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-99-003-D00128).

References

1. Telford J. R.; Raymond, K. N. In Comprehensive Supramolectilar Chemisty; Elservier Science: Oxford, 1996; Vol. 1, p 245.
2. Developmen of Iron Chelators for Chinical Use: Martel, A. E., Anderson, W. F., Badman, D. G., Eds: Elservier: North Holland, New York, 1981.
3. Tor, Y.; Libman, I.: Shanzer, A.; Felder, C. E.; Lifson, S.J. Am. Chem. Soc. 1992, 144, 6661 .
4. Rodgers, S. J., Ng, C.-Y.; Raymond, K. N. J. Am. Chem. Soc. 1985, 107, 4094.
5. Loomis, L. D.; Raymond, K. N. Inorg. Chem. 1991, 30, 906.
6. Stack, T. D. P.; Hou, Z.; Raymond, K. N. J. Am. Chem. Soc. 1993, 115, 6466.
7. Hou, Z.; Stack, T. D. P.: Sunderland, C. J.; Raymond, K. N. Inory Chim Acta 1997, 263, 341.
8. 1a: ${ }^{1} \mathrm{H} \operatorname{NMR}$ (DMSO- d_{6}) $\delta 0.68(\mathrm{dd}, J=12.3 \mathrm{~Hz}$ and 24.0 $\mathrm{Hz}, 3 \mathrm{H}), 1.73(\mathrm{br}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.24$ (dd, $J=6.0 \mathrm{~Hz}$ and $6.0 \mathrm{~Hz}, 6 \mathrm{H}$), 6.64 (dd, $J=8.0 \mathrm{~Hz}$ and 8.2 $\mathrm{Hz}, 9 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{2}\right) \delta 34.8,36.6,45.2,115.0,117.8$, 118.7, 146.2, 149.6, 169.8. HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{9}$ 579.2217 , found 579.2210 .
9. 1b: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~m}, 3 \mathrm{H})$, $1.28(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 6 \mathrm{H}), 6.69(\mathrm{dd}, J=8.0$ $\mathrm{Hz}, 9 \mathrm{H}), 6.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $8.58(\mathrm{br}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{5}\right) \delta 15.2,26.4,35.4,39.5$, $115.9,117.9,118.0,118.6,146.1,148.8,169.5$. HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{9} 621.2686$, found 621.2687 .
10. Tse, B.: Kishi, Y. J. Org. Chem. 1994, 59, 7807.
11. Martell, A. E.; Smith, R. M. Crifical Stability Constant, Pleumn: New York, 1974; Vol. 1, p 236.
12. Structures were optimized with PM3 in the Gaussian 98 program package.
13. Karpishin, T. B.; Raymond, K. N. Angew. Chem. Int. Ed. Engl. 1992, 31, 466.
14. (a) Weitl, F. L.; Raymond, K. N. J. Am. Chem. Soc. 1980, 102, 2289. (b) Xu, J: Kullgren, B: Durbin, P. W, Raymond, K. N. J. Med. Chem. 1995, 38, 2606.
15. Stechan, E. Angew. Chem. Imt. Ed. Engl. 1986, 25,683.
16. (a) Niikura, K.; Metzger, A; Anslyn, E. V. J. Am. Chem. Soc. 1998, 120, 8533. (b) Szabo, T.; OLeary, B. M.: Rebek, Ir. I. Angew: Chem. Im. Ed. Engl. 1998, 37, 3410.

[^0]: 'To whom all correspondence should be addressed. e-mail: leesh @kunsan.ac.kr; Phone: +82-63-469-4578; Fax: +82-63-469-4578

