The Efficiency Evaluation of Total Quality Management in the Korean Industry with Data Envelopment Analysis

Hanjoo Yoo

Dept. of Business Administration, Soongsil University Seoul 156-743, Korea

e-mail: hyoo@saint.ssu.ac.kr

Abstract

As all the other managerial activities, total quality management (TQM) has also inputs into and outputs from the process. Therefore, the principal managerial efficiency criteria of maximum outputs with minimum inputs should be applied to TQM. In this paper, the methodology for the performance evaluation of TQM by Data Envelopment Analysis (DEA) was proposed. DEA is used to measure the efficiency of TQM for each firm with the input and output data obtained by questionnaire. It is found that there are not significant differences between the firms with and without ISO9000 certification and between the large and small-sized firms with respect to the TQM efficiency.

1. Introduction

Global competition has become the state of nature in recent years. Pressure from strong competitors has forced managers to regard the quality as the main strategic factors to survive. A well-developed quality management will create a new corporate culture centered at the quality itself, and will refresh the employee's perception about the quality, which will eventually make the corporate more competitive.

As in many other managerial activities, it

is imperative to evaluate the effectiveness of the activity in quality management, and to set up the appropriate strategy to achieve the desired goal based on the evaluation. Thus, the importance of proper evaluation of quality management cannot be overemphasized.

Several studies on the performance measurement of total quality management are available. Saraph interviewed 162 corporate managers and exacutives responsible for the quality management, and classified the important factors for successful TQM by factor nalysis technique[Saraph et. al., 1989].

Benson et al. illustrated the relationship between corporate structural characteristics and the weight given by the managers concerning the product quality[Benson et. al., 1991]. Despite the large body of empirical research into the evaluation of TQM, most of the studies has concentrated on the simple aggregated sum of numerous factors[Black, 1995].

In this article, TQM activity is examined in the context of efficiency, which implies that more output should come out from less input if TQM is operated efficiently. A unified framework is proposed to facilitate efficiency evaluation of TQM. The suggested framework contains two individual modules; an Analytical Hierarchy Process (AHP) and a Data Envelopment Analysis (DEA).

DEA is a linear programming technique for the construction of a non-parametric, piece-wise linear convex hull to the observed set of input and output data[Charnes et. al., 1994]. Since the path-breaking DEA paper, there has been numerous applications in the field of efficiency measurement. DEA outperformed the other alternative method to measure the efficiency, especially when there are not definite physical units and/or market price for the input and output[Banker, 1993].

The implication of the DEA efficiency results is to derive the efficiency level of firm's TQM activity from the observed performance of peer firms. It also renders to

identify the benchmaking firms, which would be the valuable information in order to improve the TQM performance[Ali et. al., 1995].

In this paper, the seven different factors concerning TQM; five input factors and two output factors, are derived through literature reviews. The factors will be used in DEA model to evaluate the efficiency of TQM activity. The input and output data for DEA model will be given by AHP. AHP is the process to make an weighted sum of factors involving multiple criteria. The opinion of the quality experts was referred in order to determine the plausible weights in AHP, which permit me to avoid the arbitrariness in setting the weights.

This paper is expected to provide following policy implications. First. the firm-specific TOM efficiency level is evaluated, and the best-practiced firm with respect to TQM is identified. Second, the relationship between firm characteristics and TQM efficiency is examined. This entails the comparison of TQM efficiency between the firms with and without ISO-9000 certification. Another efficiency comparison executed between the large and small-sized firms. These efficiency comparisons between characteristic groups will provide a possible solution to questions whether the firms with ISO certification or large firms do better than those without ISO certification or small-sized firms. Lastly, the managerial strategy to improve the TQM efficiency is suggested.

This paper is organized in five subsections. The AHP approach to generate the data for efficiency evaluation reflecting qualitative and judgmental factors is presented in the next section. In the third section, discussion centers on the mathematical formulation of DEA model and the implications which can be derived from results. In the fourth section, the summary of primary results obtained from the empirical analysis and their policy implications are presented. The last section provides the summary and concluding remarks.

2. Data generating process

The critical success factors involved in TQM are generally difficult to quantify because they are often complicated and subjective. The selection of critical success factors was based on literature reviews, and a content analysis was performed through several meetings by expert group[Hanjoo, 1997]. Additionally, AHP is employed to analyze the weight given to multi-layered TQM factors, and is used to generate the relevant input and output data for efficiency evaluation.

To provide plausible weights to the

TOM, critical success factors in the following three stages for AHP are applied; the principles of decomposition, comparative judgements, and synthesis of priorities. The empirical procedure for the data generating process is as follows; Survey questionnaires were mailed to a target sample of 540 firms in Korea. These firms were selected from a directory provided by KSA (Korea Standard Association). Both primary and follow-up mailings were carried out. In order to supplement the results from the questionnaires, structured interviews were held with quality managers. Questionnaire data collected by mail cover 101 different firms. Collected data was processed by the computer program for AHP and the relative importance weights on the critical success factors were obtained. The weights derived from AHP for TOM are presented in the following Table 1[Hanjoo, 1998].

The critical success factors of TOM were divided into input and output factors according to their characteristics. The inputs are selected as the following five factors; Leadership and organization for quality (11), New product development (12), Process management (13) Human resources management (14), Customer satisfaction management (15). Outputs selected Quality improvement level as compared to domestic companies (O1) and Quality improvement level compared to foreign companies (O2). Other factors such as strategic quality planning. information analysis, organizational involvement, environmental and safety management are not considered as input nor output factors. since their weights are relatively small. Note that the O1 and O2 are considered separately on the grounds that the products for domestic and international markets can be different from each other and the systems for quality management for the two market can also be different.

3. DEA Model for measuring the TQM efficiency

Assume that there are K firms indexed by $k=1,2,\cdots,K$. Let the inputs and outputs for TQM of firm k as $Xk=(x_k^1,x_k^2,\cdots x_k^n)$ and $Yk=(y_k^1,y_k^2,\cdots y_k^m)$ respectively. The TQM efficiency can be calculated by solving the following linear programming problem for each firm:

Maximize
$$\phi_k$$

s.t. $Y_i \lambda \ge \phi Y_k$
 $X_i \lambda \ge X_k$, $i = 1, \dots, n$
 $\lambda \ge 0$

where λ is the intensity vector indicating the degree of utilization of each firm. The

intensity vector, λ , enables to expand existing output level with given input level, for the purpose of constructing unobserved but nonetheless feasible activities. It will be used to identify the best-practiced firms in determining the TQM efficiency of firm k.

The optimal ϕ_k indicates a TQM efficiency score in a manner that it takes a value of one if the unit's own technology is 'best' and larger than one if combinations of alternative technologies are indicated as efficient. The larger the value of ϕ_k the less efficient the kth firm is in performing TQM activity.

4. Empirical results

4.1 Efficiency Estimator of TQM activity

Table 2 sets out the TQM efficiency measures computed for 101 firms using data generated through the data generating process described above.

Table 3 displays the summary statistics for the information contained in Table 2. The firms with and without ISO certification are denoted as ISO and NISO respectively. Also, LARGE and SMALL denote the groups consisting of large and small-sized firms.

Table 1 Relative weights on the critical success factors of TQM in Korean companies

Primary Critical Success Factors (Weight)	Secondary Critical Success Fsctors	Weights for Secondary Factors
Leadership and Organization for Quality (0.1115)	① Leadership of Top Management② Management for Quality③ Social Responsibility	0.537(0.0599) 0.269(0.0230) 0.194(0.0216)
Strategic Quality Planning (0.0630)	① Long and Short-Term Quality Policy② Quality Policy Deployment③ Review of Policy Output	0.151(0.0095) 0.319(0.0201) 0.530(0.0334)
Information Analysis (0.0379)	 ① Establishment of Information System ② Comparative Analysis and Benchmarking ③ Implementation of Computer System 	0.199(0.0075) 0.573(0.0217) 0.228(0.0086)
New Product Development (0.1621)	Product Quality Design Technology for New Product Development	0.294(0.0477) 0.706(0.1144)
Process Management (0.0915)	 Quality Assurance System Purchasing and Outsourcing Management Production Management Facilities Management Quality Assessment 	0.386(0.0353) 0.141(0.0129) 0.192(0.0176) 0.144(0.0132) 0.137(0.0125)
Human Resources Management (0.1075)	 Human Resources Planning Education and Training Employee Welfare and Incentives 	0.198(0.0213) 0.520(0.0559) 0.282(0.0303)
Organizational Involvement (0.0677)	 Team Activities Suggestion Activities Quality Circle 	0.273(0.0185) 0.386(0.0261) 0.341(0.0231)
Environmental and Safety Management (0.0515)	① Environmental Management ② Safety Management	0.545(0.0281) 0.455(0.0234)
Customer Satisfaction Management (0.1476)	Customer Needs Survey Customer Management Customer Satisfaction Survey	0.562(0.0829) 0.221(0.0326) 0.217(0.0320)
Quality Performance (0.1595)	Quality Improvement Level Compared to Domestic Companies Quality Improvement Level Compared to Foreign Companies	0.385(0.0614) 0.615(0.0981)

No. ISO* Size* Eff. No. ISO Size Eff. No. ISO Size Eff.	Firm	Characteristics		TQM	Firm	Characteristic		TQM	Firm	Characteristic		TQM
2 1 1 1.217 36 2 1 1.163 70 1 1 1.05 37 2 1 1.150 71 1 1 1.26 4 1 1 1.200 38 1 1 1.231 72 2 1 1.000 5 1 1 1.221 72 2 1 1.000 6 1 2 1.093 40 1 1 1.159 74 1 1 1.266 7 1 1 1.000 41 1 1.159 74 1 1 1.266 7 1 1 1.000 41 1 1.100 75 1 1 1.100 8 1 1 1.000 76 1 1.160 9 2 2 1.023 1 <td>No.</td> <td>ISOª</td> <td>Size</td> <td></td> <td>No.</td> <td>ISO</td> <td>Size</td> <td></td> <td></td> <td>ISO</td> <td>Size</td> <td>Eff.</td>	No.	ISOª	Size		No.	ISO	Size			ISO	Size	Eff.
3 1 1 1.005 37 2 1 1.150 71 1 1 1.266 4 1 1 1.280 38 1 1 1.231 72 2 1 1.000 5 1 1 2.025 39 1 1 1.188 73 1 1 1.276 6 1 2 1.093 40 1 1 1.159 74 1 1 1.266 7 1 1 1.000 41 1 1.1000 75 1 1 1.169 9 2 2 1.023 43 1 1.176 77 2 1 1.160 9 2 2 1.023 43 1 1.1776 77 2 1 1.160 10 1 1 1.172 44 1 1 1.000 80 1 1 1.34 10		1	2		35		2	1.092	69	1	1	1.324
4 1 1 1.280 38 1 1 1.231 72 2 1 1.000 5 1 1 2.025 39 1 1 1.188 73 1 1 1.276 6 1 2 1.093 40 1 1 1.159 74 1 1 1.266 7 1 1 1.000 41 1 1 1.000 75 1 1 1.166 9 2 2 1.023 43 1 1 1.176 77 2 1 1.146 10 1 1 1.172 44 1 1 1.176 77 2 1 1.142 10 1 1 1.172 44 1 1 1.176 77 2 1 1.142 10 1 1 1.172 44 1 1 1.000 80 1	2	1	1	1.217	36		1	1.163	70	1	1	1.051
5 1 1 2.025 39 1 1 1.188 73 1 1 1.276 6 1 2 1.093 40 1 1 1.159 74 1 1 1.266 7 1 1 1.000 41 1 1.1000 75 1 1 1.106 8 1 1 1.744 42 1 1 1.000 76 1 1 1.16 9 2 2 1.023 43 1 1 1.176 77 2 1 1.14 10 1 1 1.172 44 1 1 1.178 78 1 1 1.379 11 1 1.157 45 1 1 1.594 79 2 2 1.266 12 2 1 1.728 46 1 1 1.000 80 1 1 1.232		1	1		37	2	1	1.150	71	1	1	1.263
6 1 2 1.093 40 1 1 1.159 74 1 1 1.266 7 1 1 1.000 41 1 1 1.000 75 1 1 1.109 8 1 1 1.744 42 1 1 1.000 76 1 1 1.169 9 2 2 1.023 43 1 1 1.176 77 2 1 1.142 10 1 1 1.157 45 1 1 1.594 79 2 2 1.266 12 2 1 1.728 46 1 1 1.000 80 1 1 1.322 13 1 1 2.025 47 1 1 1.000 81 1 1 1.214 14 2 2 1.015 48 2 2 1.235 83 2		1	1		38	1	1	1.231	72	2	1	1.000
7 1 1 1.000 41 1 1 1.000 75 1 1 1.106 8 1 1 1.744 42 1 1 1.000 76 1 1 1.166 9 2 2 1.023 43 1 1 1.176 77 2 1 1.14 1 1.178 78 1 1 1.14 1 1.178 78 1 1 1.137 1 1 1.178 78 1 1 1.324 1 1 1.178 78 1 1 1.324 1 1 1.324 79 2 2 1.266 12 1 1.000 80 1 1 1.322 1 1 1.322 1 1 1.232 1 1 1.232 1 1 1.212 1 1 1.255 1 1 1.255 1 1 1.235 1 1 1.212		1				1	1	1.188		1	1	1.278
8 1 1 1.744 42 1 1 1.000 76 1 1 1.166 9 2 2 1.023 43 1 1 1.176 77 2 1 1.142 10 1 1 1.172 44 1 1 1.178 78 1 1 1.379 11 1 1 1.157 45 1 1 1.594 79 2 2 1.266 12 2 1 1.728 46 1 1 1.000 80 1 1 1.322 13 1 1 2.025 47 1 1 1.000 81 1 1 1.214 14 2 2 1.015 48 2 2 1.235 83 2 2 1.14 16 1 1 1.312 50 1 1 1.218 85 2		1	2		40	1	1	1.159	74	1	1	1.263
9 2 2 1.023 43 1 1 1.176 77 2 1 1.14 10 1 1 1.172 44 1 1 1.178 78 1 1 1.379 11 1 1 1.157 45 1 1 1.594 79 2 2 1.266 12 2 1 1.728 46 1 1 1.000 80 1 1 1.322 13 1 1 2.025 47 1 1 1.000 81 1 1 1.214 14 2 2 1.015 48 2 2 1.235 83 2 2 1.14 14 2 2 1.189 49 2 2 1.235 83 2 2 1.14 16 1 1 1.312 50 1 1 1.218 85 2		1	1	1.000	41	1	1	1.000	75	1	1	1.109
10 1 1 1.172 44 1 1 1.178 78 1 1 1.374 11 1 1.157 45 1 1 1.594 79 2 2 1.266 12 2 1 1.728 46 1 1 1.000 80 1 1 1.324 13 1 1 2.025 47 1 1 1.000 81 1 1 1.214 14 2 2 1.015 48 2 2 1.131 82 1 1 1.216 15 2 1 1.189 49 2 2 1.235 83 2 2 1.14 16 1 1 1.312 50 1 1 1.219 84 2 2 1.14 16 1 1 1.078 52 1 1 1.288 85 2 2			1		42	1	1	1.000	76	1	1	1.166
11 1 1 1.157 45 1 1 1.594 79 2 2 1.26 12 2 1 1.728 46 1 1 1.000 80 1 1 1.324 13 1 1 2.025 47 1 1 1.000 81 1 1 1.214 14 2 2 1.015 48 2 2 1.131 82 1 1 1.216 15 2 1 1.189 49 2 2 1.235 83 2 2 1.14 16 1 1 1.312 50 1 1 1.218 85 2 2 1.21 17 2 1 1.125 51 1 1 1.288 85 2 2 1.19 18 1 1 1.078 52 1 1 1.281 86 1		2	2	1.023	43	1	1	1.176	77	2	1	1.142
12 2 1 1.728 46 1 1 1.000 80 1 1 1.322 13 1 1 2.025 47 1 1 1.000 81 1 1 1.321 14 2 2 1.015 48 2 2 1.131 82 1 1 1.256 15 2 1 1.189 49 2 2 1.235 83 2 2 1.14 16 1 1 1.312 50 1 1 1.219 84 2 2 1.21 17 2 1 1.125 51 1 1 1.288 85 2 2 1.19 18 1 1 1.078 52 1 1 1.288 85 2 2 1.19 18 1 1 1.078 52 1 1 1.281 86 1			1			1	1	1.178	78		1	1.379
13 1 1 2.025 47 1 1 1.000 81 1 1 1.214 14 2 2 1.015 48 2 2 1.131 82 1 1 1.250 15 2 1 1.189 49 2 2 1.235 83 2 2 1.142 16 1 1 1.312 50 1 1 1.219 84 2 2 1.21 17 2 1 1.125 51 1 1 1.288 85 2 2 1.19 18 1 1 1.078 52 1 1 1.281 86 1 1 1.216 19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1			1	1.157	45	1	1	1.594	79	2	2	1.263
14 2 2 1.015 48 2 2 1.131 82 1 1 1.256 15 2 1 1.189 49 2 2 1.235 83 2 2 1.14 16 1 1 1.312 50 1 1 1.219 84 2 2 1.21 17 2 1 1.125 51 1 1 1.288 85 2 2 1.194 18 1 1 1.078 52 1 1 1.281 86 1 1 1.210 19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.002 21 1 2 1.297 55 1 1 1.257 89 2			1		46	1	1	1.000	80	1	1	1.324
15 2 1 1.189 49 2 2 1.235 83 2 2 1.14: 16 1 1 1.312 50 1 1 1.219 84 2 2 1.21 17 2 1 1.125 51 1 1 1.288 85 2 2 1.194 18 1 1 1.078 52 1 1 1.281 86 1 1 1.216 19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.002 21 1 2 1.297 55 1 1 1.257 89 2 1 1.166 22 1 1 1.097 57 2 1 1.255 91 1	13			2.025	47	1	1	1.000	81	1	1	1.214
15 2 1 1.189 49 2 2 1.235 83 2 2 1.142 16 1 1 1.312 50 1 1 1.219 84 2 2 1.21 17 2 1 1.125 51 1 1 1.288 85 2 2 1.194 18 1 1 1.078 52 1 1 1.281 86 1 1 1.216 19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.002 21 1 2 1.297 55 1 1 1.257 89 2 1 1.166 22 1 1 1.097 57 2 1 1.255 91 1		2	2	1.015	48	2		1.131	82	1	1	1.256
16 1 1 1.312 50 1 1 1.219 84 2 2 1.21 17 2 1 1.125 51 1 1 1.288 85 2 2 1.194 18 1 1 1.078 52 1 1 1.281 86 1 1 1.216 19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.002 21 1 2 1.257 89 2 1 1.166 22 1 1.101 56 1 2 1.116 90 1 2 1.146 23 1	15	2	1	1.189	49	2	2		83	2	2	1.145
17 2 1 1.125 51 1 1 1.288 85 2 2 1.194 18 1 1 1.078 52 1 1 1.281 86 1 1 1.216 19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.000 21 1 2 1.297 55 1 1 1.257 89 2 1 1.167 22 1 1 1.010 56 1 2 1.116 90 1 2 1.146 23 1 1 1.097 57 2 1 1.255 91 1 2 1.126 24 1 1 1.061 58 2 1 1.284 92 2	16		1	1.312	50	1	1	1.219	84	2		1.211
18 1 1 1.078 52 1 1 1.281 86 1 1 1.216 19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.022 21 1 2 1.297 55 1 1 1.257 89 2 1 1.16 22 1 1 1.101 56 1 2 1.116 90 1 2 1.140 23 1 1 1.097 57 2 1 1.255 91 1 2 1.140 23 1 1 1.061 58 2 1 1.284 92 2 2 1.299 24 1 1 1.061 58 2 1 1.284 92 2	17	2	1	1.125	51	1	1	1.288	85	2		1.194
19 1 1 1.126 53 1 1 1.532 87 1 1 1.000 20 1 1 1.350 54 1 1 1.171 88 1 1 1.021 21 1 2 1.297 55 1 1 1.257 89 2 1 1.16 22 1 1 1.001 56 1 2 1.116 90 1 2 1.140 23 1 1 1.097 57 2 1 1.255 91 1 2 1.140 23 1 1 1.061 58 2 1 1.284 92 2 2 1.122 24 1 1 1.061 58 2 1 1.284 92 2 2 1.292 25 1 2 1.180 59 1 1 1.000 93 2	18	1	1	1.078	52	1	1	1.281	86	1	1	1.216
20 1 1 1.350 54 1 1 1.171 88 1 1 1.022 21 1 2 1.297 55 1 1 1.257 89 2 1 1.16 22 1 1 1.101 56 1 2 1.116 90 1 2 1.140 23 1 1 1.097 57 2 1 1.255 91 1 2 1.140 23 1 1 1.061 58 2 1 1.284 92 2 2 1.122 24 1 1 1.061 58 2 1 1.284 92 2 2 1.292 25 1 2 1.180 59 1 1 1.000 93 2 2 1.099 26 1 1 1.127 94 1 2 1.480 27	19	1	1	1.126	53	1	1	1.532		1	1	1.000
21 1 2 1.297 55 1 1 1.257 89 2 1 1.166 22 1 1.101 56 1 2 1.116 90 1 2 1.140 23 1 1 1.097 57 2 1 1.255 91 1 2 1.122 24 1 1 1.061 58 2 1 1.284 92 2 2 1.292 25 1 2 1.180 59 1 1 1.000 93 2 2 1.094 26 1 1 1.126 60 1 1 1.217 94 1 2 1.480 27 1 1 1.177 61 1 1 1.202 95 2 2 1.239 28 1 1 1.219 62 1 1 1.297 96 2 2	20	1	1	1.350	54	1	1	1.171		1	1	1.028
22 1 1 1.101 56 1 2 1.116 90 1 2 1.140 23 1 1 1.097 57 2 1 1.255 91 1 2 1.12 24 1 1 1.061 58 2 1 1.284 92 2 2 1.299 25 1 2 1.180 59 1 1 1.000 93 2 2 1.094 26 1 1 1.126 60 1 1 1.217 94 1 2 1.483 27 1 1 1.177 61 1 1 1.202 95 2 2 1.239 28 1 1 1.219 62 1 1 1.297 96 2 2 1.220 29 2 1 1.088 63 2 2 1.365 97 2	21	1	2	1.297	55	1	1	1.257		2	1	1.167
23 1 1 1.097 57 2 1 1.255 91 1 2 1.12: 24 1 1.061 58 2 1 1.284 92 2 2 1.29: 25 1 2 1.180 59 1 1 1.000 93 2 2 1.09: 26 1 1 1.126 60 1 1 1.217 94 1 2 1.48: 27 1 1 1.177 61 1 1 1.202 95 2 2 1.239 28 1 1 1.219 62 1 1 1.297 96 2 2 1.220 29 2 1 1.088 63 2 2 1.365 97 2 2 1.000 30 1 1 1.168 64 1 1 1.061 99 1 1	22	1	1	1.101	56	1	2	1.116		1 1	2	1.140
24 1 1 1.061 58 2 1 1.284 92 2 2 1.299 25 1 2 1.180 59 1 1 1.000 93 2 2 1.098 26 1 1 1.1217 94 1 2 1.483 27 1 1 1.177 61 1 1 1.202 95 2 2 1.239 28 1 1 1.219 62 1 1 1.297 96 2 2 1.239 29 2 1 1.088 63 2 2 1.365 97 2 2 1.000 30 1 1 1.168 64 1 1 1.104 98 2 2 1.289 31 1 1 1.161 65 2 1 1.061 99 1 1 1.000 32	23	1	1	1.097	57	2	1	1.255		1	2	1.125
25 1 2 1.180 59 1 1 1.000 93 2 2 1.098 26 1 1 1.1217 94 1 2 1.48 27 1 1 1.177 61 1 1 1.202 95 2 2 1.239 28 1 1 1.219 62 1 1 1.297 96 2 2 1.220 29 2 1 1.088 63 2 2 1.365 97 2 2 1.000 30 1 1 1.168 64 1 1 1.104 98 2 2 1.28 31 1 1 1.744 66 2 1 1.061 99 1 1 1.000 32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33	24	1	1	1.061	58	2	1	1.284	92	2	2	1.295
26 1 1 1.126 60 1 1 1.217 94 1 2 1.48: 27 1 1 1.177 61 1 1 1.202 95 2 2 1.23: 28 1 1 1.219 62 1 1 1.297 96 2 2 1.220 29 2 1 1.088 63 2 2 1.365 97 2 2 1.000 30 1 1 1.168 64 1 1 1.104 98 2 2 1.289 31 1 1 1.161 65 2 1 1.061 99 1 1 1.000 32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33 1 1 1.755 67 1 1 1.350 101 1 <td>25</td> <td>1</td> <td>2</td> <td>1.180</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>2</td> <td>$\overline{2}$</td> <td>1.098</td>	25	1	2	1.180			1			2	$\overline{2}$	1.098
27 1 1 1.177 61 1 1 1.202 95 2 2 1.239 28 1 1 1.219 62 1 1 1.297 96 2 2 1.220 29 2 1 1.088 63 2 2 1.365 97 2 2 1.000 30 1 1 1.168 64 1 1 1.104 98 2 2 1.289 31 1 1 1.161 65 2 1 1.061 99 1 1 1.000 32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33 1 1 1.755 67 1 1 1.350 101 1 2 1.163	26	1		1.126	60	1	1				2	1.483
28 1 1 1.219 62 1 1 1.297 96 2 2 1.220 29 2 1 1.088 63 2 2 1.365 97 2 2 1.000 30 1 1 1.168 64 1 1 1.104 98 2 2 1.289 31 1 1 1.161 65 2 1 1.061 99 1 1 1.000 32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33 1 1 1.755 67 1 1 1.350 101 1 2 1.163	27	1	1			1	1				2	1.239
29 2 1 1.088 63 2 2 1.365 97 2 2 1.000 30 1 1 1.168 64 1 1 1.104 98 2 2 1.289 31 1 1 1.161 65 2 1 1.061 99 1 1 1.000 32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33 1 1 1.755 67 1 1 1.350 101 1 2 1.163	28	1	1	1.219	62	1	1				2	
30 1 1 1.168 64 1 1 1.104 98 2 2 1.289 31 1 1 1.161 65 2 1 1.061 99 1 1 1.000 32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33 1 1 1.755 67 1 1 1.350 101 1 2 1.163	29	2	1		63	2	2			2	$\frac{1}{2}$	1.000
31 1 1 1.161 65 2 1 1.061 99 1 1 1.000 32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33 1 1 1.755 67 1 1 1.350 101 1 2 1.163	30	1	1			1						1.289
32 1 1 1.744 66 2 1 1.039 100 1 2 1.000 33 1 1 1.755 67 1 1 1.350 101 1 2 1.163		1				2	1			1		1.000
33 1 1 1.755 67 1 1 1.350 101 1 2 1.163		1	1				ĺ			1 -		
		1			1	1	li			_		1.165
34 1 2 1.120 68 1 1 1.000 - - - -	34	1	2	1.120	68				1	_	_	-

Table 2 TQM efficiency estimator

Note

- a) The number 1 and 2 in the column named ISO denote the firms with and without ISO certification, respectively.
- b) The number 1 and 2 in the column entitled Size denote the firm size with 1 for large and 2 for small-size based on the operating gross revenue.

Statistics	ISO	NISO	LARGE	SMALL	Total Sample
Mean	1.195	1.183	1.232	1.169	1.211
Max.	2.025	1.728	2.025	1.483	2.025
Mini.	1.000	1.000	1.000	1.000	1.000
Standard Dev.	0.197	0.145	0.219	0.118	0.201

Table 3 TQM efficiency results

The mean value of TQM efficiency from over 101 firms suggests that the average inefficiency is 21.1%, which implies that 21% output with the same level of TQM activity effort can be obtained more. The firms in the ISO group seem slightly less efficient than the firms in the NISO group (19.5% versus 18.3% of inefficiency). The large firms appear also less efficient than small firms (23.3% versus 16.9%).

4.2 Statistical Tests for The Firm Characteristics

The assumption of half-normal for the TQM efficiency is adopted, and F-test following procedure is performed. If the TQM efficiency, ϕ_i (i=1,2), for two group G_1 and G_2 are half-normally distributed, such as $|N(0,\sigma_i)|$ then the squared sum of TQM efficiency divided by deviation, $\sum_i (\frac{\phi_j}{\sigma_i})^2$, $j \in G_i$, will follow chi-square

distribution with n_i degree of freedom. Therefore, under the null hypothesis $H_0: \sigma_i = \sigma_2$, it is possible to test the null hypothesis H_0 using the test statistics $\left[\sum_{j}(\varepsilon_j)^2/n_1\right] / \left[\sum_{k}(\varepsilon_k)^2/n_2\right]$ relative to the F-distribution with (n_1, n_2) degrees of freedom[Banker, 1996].

F-statistics calculated for ISO versus NISO and LARGE versus SMALL are F(73, 28) = 1.0859 and F(74, 27) = 1.1273, respectively.

For both cases, the probabilities to reject the hypothesis that there are significant 99%[DeGroot, difference exceed 19851. Therefore, it can be said that the TQM efficiency of firms in the ISO and LARGE group are not different from those of firms in the NISO and SMALL group with 99% of statistical significance. These test results contrast with the traditional perception that the firms with ISO 9000 certification or large firms do the quality management more efficiently. These results can be partly explained by noting that the ISO certification itself focuses on the procedure of quality management rather than the efficiency as the ratio of quality output to input. With the same postulation, it can be said that the large firms generally focus on the input side to manage the quality problem, not on the efficiency of quality activity.

5. Summary and conclusions

This paper introduced an unified framework to evaluate the TQM activity based on the efficiency concept. The proposed framework integrates the two distinctive methodologies serially; one is a data generating process incorporating AHP and the other is the DEA approach.

The first step of this process was to identify the appropriate input and output factors for TQM. As realized by many researchers, the factors involved in TQM are difficult to quantify, since they often contain qualitative and subjective judgments.

In this paper DEA was employed to compute a single measure of TQM efficiency utilizing the input and output data generated data generating process utilizing AHP in the first stage.

Empirical application to the 101 sample firms provided the firm-specific TQM efficiency measure and identified best-

practiced firms that would be a valuable piece of information for benchmarking in TQM activity. Moreover, the comparisons between the firms with and without ISO certification and between large and small-sized firms were performed based on resulted TOM efficiency Formal statistical tests showed that there are not significant differences between groups in terms of TOM efficiency.

The efficiency perspective employed in this paper is expected to provide another insight in analyzing the performance of TQM. Considering that TQM is also a part of managerial activity, more research should be devoted to the evaluate the TQM efficiency and to address relevant strategies to improve it.

References

- Ali, A. I., C. S. Lerme, and L. M. Seiford (1995), "Components of efficiency evaluation in Data Envelopment Analysis", European Journal of Operational Research, Envelopment Analysis", vol. 80, pp. 462-473.
- Banker, R. D. (1993), "Maximum likelihood, consistency and Data Envelopment Analysis:
 A statistical foundation", Management Science, Oct., pp. 1267-1273.
- Banker, R. D. (1996), "Hypothesis Tests Using Data Envelopment Analysis",

- Productivity Analysis, vol. 7, pp. 139-160.
- Benson, P. G., Saraph, J. V. and Schroeder, R. G. (1991), "The effect of organizational context on quality management: an empirical investigation", *Management Science*, vol. 37, no. 9, pp. 1000-1002.
- 5. Black, S., and L. J. Porter (1995), "An empirical model for total quality management", *Total Quality Management*, vol. 6, no. 2, pp. 149-164.
- Charnes, A., W. W. Cooper, A. Y. Lewin, and L. M. Seiford, eds. (1994),
 Data Envelopment Analysis: Theory, methodology, and application, Boston,
 Kluwer Academic Publishers.
- DeGroot, M. H. (1985), Probability and statistics, 2nd ed., Massachusetts, Addison-Wesley Publishing Co.
- 8. Hanjoo Yoo (1997), "A Study on the Quality Management Evaluation in Korean Industry", Journal of the Korean Production and Operations Management Society, vol. 8, no. 1, April, pp. 124-136 (written in Korean).
- Hanjoo, Yoo, and Jeong-Dong Lee (1998), "The Efficiency Evaluation for TQM Activities", The 12th Asia Quality Management Symposium, Nov. pp. 419-428.
- 10. Saraph, J. V., Benson, P. G. and Schroeder, R. G. (1989), "An instrument for measuring the critical factors of quality management", *Decision Science*, vol. 20, pp. 810-829.